Interface and Defect Engineering of a Hollow TiO2@ZnIn2S4 Heterojunction for Highly Enhanced CO2 Photoreduction Activity

Rational engineering of the interfaces or defects of heterojunctions provides an effective strategy to improve their photocatalytic performance but is still a challenge. Herein, we present an ingenious calcination strategy of simultaneously introducing sulfur vacancies and enhancing the interfacial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2023-02, Vol.11 (6), p.2531-2540
Hauptverfasser: Du, Jun, Shi, Hainan, Wu, Jiaming, Li, Keyan, Song, Chunshan, Guo, Xinwen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2540
container_issue 6
container_start_page 2531
container_title ACS sustainable chemistry & engineering
container_volume 11
creator Du, Jun
Shi, Hainan
Wu, Jiaming
Li, Keyan
Song, Chunshan
Guo, Xinwen
description Rational engineering of the interfaces or defects of heterojunctions provides an effective strategy to improve their photocatalytic performance but is still a challenge. Herein, we present an ingenious calcination strategy of simultaneously introducing sulfur vacancies and enhancing the interfacial interaction for a hollow TiO2@ZnIn2S4 heterojunction, thus greatly improving the photocatalytic CO2 reduction activity. The low-temperature calcination strategy makes the heterojunction possess both abundant sulfur vacancies and strong interfacial interaction, which lead to an enhanced CO2 photoreduction activity with a CO evolution rate of 1330 μmol g–1 h–1, much higher than that of the sample without calcination treatment (639 μmol g–1 h–1). The significantly boosted photocatalytic performance can be ascribed to the improved transfer and separation of photogenerated charges resulting from the intimate heterojunction interface, as well as the strengthened visible-light absorption due to the rich sulfur vacancies. This work presents a feasible and convenient method to optimize the performance of the heterojunction photocatalysts by designing the interfaces and defects.
doi_str_mv 10.1021/acssuschemeng.2c06693
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acssuschemeng_2c06693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h06511805</sourcerecordid><originalsourceid>FETCH-LOGICAL-a197t-877da63d7bc128a04f5cdabc1c6a74422f78e469f4c94344b34657cbafabaf983</originalsourceid><addsrcrecordid>eNpVkNtKAzEQhoMoWGofQcgLbM2pOdxZanULQgXrjTdLmp3sblkT2IPatzfSXujA8M_A_P_Ah9AtJXNKGL2zru_H3tXwAaGaM0ekNPwCTRiVOiNCLy7_zNdo1vcHksoYzjSdoO9NGKDz1gG2ocQP4MENeB2qJgB0Tahw9NjiPLZt_MK7Zsvu38MmsFeBc0jOeBiDG5oYsI8dzpuqbo_JXtvgoMSrLcMvdRxiB-V4Olsm-WyG4w268rbtYXbWKXp7XO9Wefa8fdqsls-ZpUYNmVaqtJKXau8o05YIv3ClTYuTVgnBmFcahDReOCO4EHsu5EK5vfU2tdF8iugpN4EqDnHsQvpWUFL80iv-0SvO9PgPsmpogw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interface and Defect Engineering of a Hollow TiO2@ZnIn2S4 Heterojunction for Highly Enhanced CO2 Photoreduction Activity</title><source>ACS Publications</source><creator>Du, Jun ; Shi, Hainan ; Wu, Jiaming ; Li, Keyan ; Song, Chunshan ; Guo, Xinwen</creator><creatorcontrib>Du, Jun ; Shi, Hainan ; Wu, Jiaming ; Li, Keyan ; Song, Chunshan ; Guo, Xinwen</creatorcontrib><description>Rational engineering of the interfaces or defects of heterojunctions provides an effective strategy to improve their photocatalytic performance but is still a challenge. Herein, we present an ingenious calcination strategy of simultaneously introducing sulfur vacancies and enhancing the interfacial interaction for a hollow TiO2@ZnIn2S4 heterojunction, thus greatly improving the photocatalytic CO2 reduction activity. The low-temperature calcination strategy makes the heterojunction possess both abundant sulfur vacancies and strong interfacial interaction, which lead to an enhanced CO2 photoreduction activity with a CO evolution rate of 1330 μmol g–1 h–1, much higher than that of the sample without calcination treatment (639 μmol g–1 h–1). The significantly boosted photocatalytic performance can be ascribed to the improved transfer and separation of photogenerated charges resulting from the intimate heterojunction interface, as well as the strengthened visible-light absorption due to the rich sulfur vacancies. This work presents a feasible and convenient method to optimize the performance of the heterojunction photocatalysts by designing the interfaces and defects.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.2c06693</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry &amp; engineering, 2023-02, Vol.11 (6), p.2531-2540</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0467-6684 ; 0000-0002-6597-4979 ; 0000-0003-2344-9911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.2c06693$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.2c06693$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Du, Jun</creatorcontrib><creatorcontrib>Shi, Hainan</creatorcontrib><creatorcontrib>Wu, Jiaming</creatorcontrib><creatorcontrib>Li, Keyan</creatorcontrib><creatorcontrib>Song, Chunshan</creatorcontrib><creatorcontrib>Guo, Xinwen</creatorcontrib><title>Interface and Defect Engineering of a Hollow TiO2@ZnIn2S4 Heterojunction for Highly Enhanced CO2 Photoreduction Activity</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Rational engineering of the interfaces or defects of heterojunctions provides an effective strategy to improve their photocatalytic performance but is still a challenge. Herein, we present an ingenious calcination strategy of simultaneously introducing sulfur vacancies and enhancing the interfacial interaction for a hollow TiO2@ZnIn2S4 heterojunction, thus greatly improving the photocatalytic CO2 reduction activity. The low-temperature calcination strategy makes the heterojunction possess both abundant sulfur vacancies and strong interfacial interaction, which lead to an enhanced CO2 photoreduction activity with a CO evolution rate of 1330 μmol g–1 h–1, much higher than that of the sample without calcination treatment (639 μmol g–1 h–1). The significantly boosted photocatalytic performance can be ascribed to the improved transfer and separation of photogenerated charges resulting from the intimate heterojunction interface, as well as the strengthened visible-light absorption due to the rich sulfur vacancies. This work presents a feasible and convenient method to optimize the performance of the heterojunction photocatalysts by designing the interfaces and defects.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpVkNtKAzEQhoMoWGofQcgLbM2pOdxZanULQgXrjTdLmp3sblkT2IPatzfSXujA8M_A_P_Ah9AtJXNKGL2zru_H3tXwAaGaM0ekNPwCTRiVOiNCLy7_zNdo1vcHksoYzjSdoO9NGKDz1gG2ocQP4MENeB2qJgB0Tahw9NjiPLZt_MK7Zsvu38MmsFeBc0jOeBiDG5oYsI8dzpuqbo_JXtvgoMSrLcMvdRxiB-V4Olsm-WyG4w268rbtYXbWKXp7XO9Wefa8fdqsls-ZpUYNmVaqtJKXau8o05YIv3ClTYuTVgnBmFcahDReOCO4EHsu5EK5vfU2tdF8iugpN4EqDnHsQvpWUFL80iv-0SvO9PgPsmpogw</recordid><startdate>20230213</startdate><enddate>20230213</enddate><creator>Du, Jun</creator><creator>Shi, Hainan</creator><creator>Wu, Jiaming</creator><creator>Li, Keyan</creator><creator>Song, Chunshan</creator><creator>Guo, Xinwen</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-0467-6684</orcidid><orcidid>https://orcid.org/0000-0002-6597-4979</orcidid><orcidid>https://orcid.org/0000-0003-2344-9911</orcidid></search><sort><creationdate>20230213</creationdate><title>Interface and Defect Engineering of a Hollow TiO2@ZnIn2S4 Heterojunction for Highly Enhanced CO2 Photoreduction Activity</title><author>Du, Jun ; Shi, Hainan ; Wu, Jiaming ; Li, Keyan ; Song, Chunshan ; Guo, Xinwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a197t-877da63d7bc128a04f5cdabc1c6a74422f78e469f4c94344b34657cbafabaf983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Jun</creatorcontrib><creatorcontrib>Shi, Hainan</creatorcontrib><creatorcontrib>Wu, Jiaming</creatorcontrib><creatorcontrib>Li, Keyan</creatorcontrib><creatorcontrib>Song, Chunshan</creatorcontrib><creatorcontrib>Guo, Xinwen</creatorcontrib><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Jun</au><au>Shi, Hainan</au><au>Wu, Jiaming</au><au>Li, Keyan</au><au>Song, Chunshan</au><au>Guo, Xinwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface and Defect Engineering of a Hollow TiO2@ZnIn2S4 Heterojunction for Highly Enhanced CO2 Photoreduction Activity</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2023-02-13</date><risdate>2023</risdate><volume>11</volume><issue>6</issue><spage>2531</spage><epage>2540</epage><pages>2531-2540</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Rational engineering of the interfaces or defects of heterojunctions provides an effective strategy to improve their photocatalytic performance but is still a challenge. Herein, we present an ingenious calcination strategy of simultaneously introducing sulfur vacancies and enhancing the interfacial interaction for a hollow TiO2@ZnIn2S4 heterojunction, thus greatly improving the photocatalytic CO2 reduction activity. The low-temperature calcination strategy makes the heterojunction possess both abundant sulfur vacancies and strong interfacial interaction, which lead to an enhanced CO2 photoreduction activity with a CO evolution rate of 1330 μmol g–1 h–1, much higher than that of the sample without calcination treatment (639 μmol g–1 h–1). The significantly boosted photocatalytic performance can be ascribed to the improved transfer and separation of photogenerated charges resulting from the intimate heterojunction interface, as well as the strengthened visible-light absorption due to the rich sulfur vacancies. This work presents a feasible and convenient method to optimize the performance of the heterojunction photocatalysts by designing the interfaces and defects.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.2c06693</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0467-6684</orcidid><orcidid>https://orcid.org/0000-0002-6597-4979</orcidid><orcidid>https://orcid.org/0000-0003-2344-9911</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2023-02, Vol.11 (6), p.2531-2540
issn 2168-0485
2168-0485
language eng
recordid cdi_acs_journals_10_1021_acssuschemeng_2c06693
source ACS Publications
title Interface and Defect Engineering of a Hollow TiO2@ZnIn2S4 Heterojunction for Highly Enhanced CO2 Photoreduction Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20and%20Defect%20Engineering%20of%20a%20Hollow%20TiO2@ZnIn2S4%20Heterojunction%20for%20Highly%20Enhanced%20CO2%20Photoreduction%20Activity&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Du,%20Jun&rft.date=2023-02-13&rft.volume=11&rft.issue=6&rft.spage=2531&rft.epage=2540&rft.pages=2531-2540&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.2c06693&rft_dat=%3Cacs%3Eh06511805%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true