Enhancing Reversible Reactions via Phase Engineering on Bi-Crystal GeS2 Nanosheets for Superior Sodium-Ion Storage

Phase engineering for synchronously realizing the demand of electrochemical reactions and structural stability has attracted the great enthusiasm of researchers to obtain high capacity and tolerance for Na+ insertion, especially the construction of uniform heterostructures by regulating the crystal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2022-09, Vol.10 (38), p.12679-12688
Hauptverfasser: Qin, Haozhe, Zhang, Bao, Wang, Chunhui, Ming, Lei, Ou, Xing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12688
container_issue 38
container_start_page 12679
container_title ACS sustainable chemistry & engineering
container_volume 10
creator Qin, Haozhe
Zhang, Bao
Wang, Chunhui
Ming, Lei
Ou, Xing
description Phase engineering for synchronously realizing the demand of electrochemical reactions and structural stability has attracted the great enthusiasm of researchers to obtain high capacity and tolerance for Na+ insertion, especially the construction of uniform heterostructures by regulating the crystal structure in the same phase. Herein, ultrathin GeS2 nanoflakes composed of a mixture of orthorhombic and monoclinic crystal structures have been constructed by employing an in situ Ge-MOF sulfidation method. Benefiting from the combined effect of the accelerated reaction kinetics derived from the self-assembly of heterostructures, and the enhanced reaction reversibility originating from the excellent homogeneity of heterointerfaces and a stable intermediate phase interface, the GS-OM electrode materials show outstanding rate properties (371.9 mA h g–1 at 30 A g–1) and Na+ uptake/removal durability (603.9 mA h g–1 at 10 A g–1 over 1000 cycles) and even deliver an excellent practicability (104.01 mA h g–1 at 1 A g–1 over 300 cycles for full cells). Of note, this constructed phase engineering is expected to provide powerful guidance and effective insight for designing better sodium ion battery anodes with not only superior electrochemical reaction reversibility but also improved structure perdurability.
doi_str_mv 10.1021/acssuschemeng.2c03375
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acssuschemeng_2c03375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b972555883</sourcerecordid><originalsourceid>FETCH-LOGICAL-a127t-be32cc20fbdf028e246aebe419df45a1f29992e13418c59555f8c0d8da9cc8593</originalsourceid><addsrcrecordid>eNpVkF1LwzAUhoMoOOZ-gpA_0JmPZksutcw5GCpOr0uanrQZWyJJO_Df27Jd6Lk5z8X7ngMPQveUzClh9EGblPpkWjiCb-bMEM6X4gpNGF3IjORSXP_hWzRLaU-GUYozSScornyrvXG-wR9wgphcdYABtelc8AmfnMbvrU6AV75xHiCO0eDxk8uK-JM6fcBr2DH8qn1ILUCXsA0R7_rvITpCqF1_zDZDZdeFqBu4QzdWHxLMLnuKvp5Xn8VLtn1bb4rHbaYpW3ZZBZwZw4itakuYBJYvNFSQU1XbXGhqmVKKAeU5lUYoIYSVhtSy1soYKRSfInq-Oygq96GPfvhWUlKO3sp_3sqLN_4Lrp1mxA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancing Reversible Reactions via Phase Engineering on Bi-Crystal GeS2 Nanosheets for Superior Sodium-Ion Storage</title><source>ACS Publications</source><creator>Qin, Haozhe ; Zhang, Bao ; Wang, Chunhui ; Ming, Lei ; Ou, Xing</creator><creatorcontrib>Qin, Haozhe ; Zhang, Bao ; Wang, Chunhui ; Ming, Lei ; Ou, Xing</creatorcontrib><description>Phase engineering for synchronously realizing the demand of electrochemical reactions and structural stability has attracted the great enthusiasm of researchers to obtain high capacity and tolerance for Na+ insertion, especially the construction of uniform heterostructures by regulating the crystal structure in the same phase. Herein, ultrathin GeS2 nanoflakes composed of a mixture of orthorhombic and monoclinic crystal structures have been constructed by employing an in situ Ge-MOF sulfidation method. Benefiting from the combined effect of the accelerated reaction kinetics derived from the self-assembly of heterostructures, and the enhanced reaction reversibility originating from the excellent homogeneity of heterointerfaces and a stable intermediate phase interface, the GS-OM electrode materials show outstanding rate properties (371.9 mA h g–1 at 30 A g–1) and Na+ uptake/removal durability (603.9 mA h g–1 at 10 A g–1 over 1000 cycles) and even deliver an excellent practicability (104.01 mA h g–1 at 1 A g–1 over 300 cycles for full cells). Of note, this constructed phase engineering is expected to provide powerful guidance and effective insight for designing better sodium ion battery anodes with not only superior electrochemical reaction reversibility but also improved structure perdurability.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.2c03375</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry &amp; engineering, 2022-09, Vol.10 (38), p.12679-12688</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0056-256X ; 0000-0001-6302-7372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.2c03375$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.2c03375$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Qin, Haozhe</creatorcontrib><creatorcontrib>Zhang, Bao</creatorcontrib><creatorcontrib>Wang, Chunhui</creatorcontrib><creatorcontrib>Ming, Lei</creatorcontrib><creatorcontrib>Ou, Xing</creatorcontrib><title>Enhancing Reversible Reactions via Phase Engineering on Bi-Crystal GeS2 Nanosheets for Superior Sodium-Ion Storage</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Phase engineering for synchronously realizing the demand of electrochemical reactions and structural stability has attracted the great enthusiasm of researchers to obtain high capacity and tolerance for Na+ insertion, especially the construction of uniform heterostructures by regulating the crystal structure in the same phase. Herein, ultrathin GeS2 nanoflakes composed of a mixture of orthorhombic and monoclinic crystal structures have been constructed by employing an in situ Ge-MOF sulfidation method. Benefiting from the combined effect of the accelerated reaction kinetics derived from the self-assembly of heterostructures, and the enhanced reaction reversibility originating from the excellent homogeneity of heterointerfaces and a stable intermediate phase interface, the GS-OM electrode materials show outstanding rate properties (371.9 mA h g–1 at 30 A g–1) and Na+ uptake/removal durability (603.9 mA h g–1 at 10 A g–1 over 1000 cycles) and even deliver an excellent practicability (104.01 mA h g–1 at 1 A g–1 over 300 cycles for full cells). Of note, this constructed phase engineering is expected to provide powerful guidance and effective insight for designing better sodium ion battery anodes with not only superior electrochemical reaction reversibility but also improved structure perdurability.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpVkF1LwzAUhoMoOOZ-gpA_0JmPZksutcw5GCpOr0uanrQZWyJJO_Df27Jd6Lk5z8X7ngMPQveUzClh9EGblPpkWjiCb-bMEM6X4gpNGF3IjORSXP_hWzRLaU-GUYozSScornyrvXG-wR9wgphcdYABtelc8AmfnMbvrU6AV75xHiCO0eDxk8uK-JM6fcBr2DH8qn1ILUCXsA0R7_rvITpCqF1_zDZDZdeFqBu4QzdWHxLMLnuKvp5Xn8VLtn1bb4rHbaYpW3ZZBZwZw4itakuYBJYvNFSQU1XbXGhqmVKKAeU5lUYoIYSVhtSy1soYKRSfInq-Oygq96GPfvhWUlKO3sp_3sqLN_4Lrp1mxA</recordid><startdate>20220926</startdate><enddate>20220926</enddate><creator>Qin, Haozhe</creator><creator>Zhang, Bao</creator><creator>Wang, Chunhui</creator><creator>Ming, Lei</creator><creator>Ou, Xing</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-0056-256X</orcidid><orcidid>https://orcid.org/0000-0001-6302-7372</orcidid></search><sort><creationdate>20220926</creationdate><title>Enhancing Reversible Reactions via Phase Engineering on Bi-Crystal GeS2 Nanosheets for Superior Sodium-Ion Storage</title><author>Qin, Haozhe ; Zhang, Bao ; Wang, Chunhui ; Ming, Lei ; Ou, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a127t-be32cc20fbdf028e246aebe419df45a1f29992e13418c59555f8c0d8da9cc8593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Haozhe</creatorcontrib><creatorcontrib>Zhang, Bao</creatorcontrib><creatorcontrib>Wang, Chunhui</creatorcontrib><creatorcontrib>Ming, Lei</creatorcontrib><creatorcontrib>Ou, Xing</creatorcontrib><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Haozhe</au><au>Zhang, Bao</au><au>Wang, Chunhui</au><au>Ming, Lei</au><au>Ou, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Reversible Reactions via Phase Engineering on Bi-Crystal GeS2 Nanosheets for Superior Sodium-Ion Storage</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2022-09-26</date><risdate>2022</risdate><volume>10</volume><issue>38</issue><spage>12679</spage><epage>12688</epage><pages>12679-12688</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Phase engineering for synchronously realizing the demand of electrochemical reactions and structural stability has attracted the great enthusiasm of researchers to obtain high capacity and tolerance for Na+ insertion, especially the construction of uniform heterostructures by regulating the crystal structure in the same phase. Herein, ultrathin GeS2 nanoflakes composed of a mixture of orthorhombic and monoclinic crystal structures have been constructed by employing an in situ Ge-MOF sulfidation method. Benefiting from the combined effect of the accelerated reaction kinetics derived from the self-assembly of heterostructures, and the enhanced reaction reversibility originating from the excellent homogeneity of heterointerfaces and a stable intermediate phase interface, the GS-OM electrode materials show outstanding rate properties (371.9 mA h g–1 at 30 A g–1) and Na+ uptake/removal durability (603.9 mA h g–1 at 10 A g–1 over 1000 cycles) and even deliver an excellent practicability (104.01 mA h g–1 at 1 A g–1 over 300 cycles for full cells). Of note, this constructed phase engineering is expected to provide powerful guidance and effective insight for designing better sodium ion battery anodes with not only superior electrochemical reaction reversibility but also improved structure perdurability.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.2c03375</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0056-256X</orcidid><orcidid>https://orcid.org/0000-0001-6302-7372</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2022-09, Vol.10 (38), p.12679-12688
issn 2168-0485
2168-0485
language eng
recordid cdi_acs_journals_10_1021_acssuschemeng_2c03375
source ACS Publications
title Enhancing Reversible Reactions via Phase Engineering on Bi-Crystal GeS2 Nanosheets for Superior Sodium-Ion Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Reversible%20Reactions%20via%20Phase%20Engineering%20on%20Bi-Crystal%20GeS2%20Nanosheets%20for%20Superior%20Sodium-Ion%20Storage&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Qin,%20Haozhe&rft.date=2022-09-26&rft.volume=10&rft.issue=38&rft.spage=12679&rft.epage=12688&rft.pages=12679-12688&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.2c03375&rft_dat=%3Cacs%3Eb972555883%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true