Template-Free Synthesis of Hollow CaO/Ca2SiO4 Nanoparticle as a Cyclically Stable High-Capacity CO2 Sorbent
Cyclically stable and highly effective CaO-based CO2 sorbents are crucial to calcium looping, which is a CO2-capture technique that offers an effective and feasible way to achieve the goal of carbon neutrality. With the goal of enhancing CO2-capture performance, a template-free synthetic route was r...
Gespeichert in:
Veröffentlicht in: | ACS sustainable chemistry & engineering 2021-02, Vol.9 (5), p.2171-2179 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2179 |
---|---|
container_issue | 5 |
container_start_page | 2171 |
container_title | ACS sustainable chemistry & engineering |
container_volume | 9 |
creator | Huang, Caifeng Xu, Min Huai, Xiulan Liu, Zhangli |
description | Cyclically stable and highly effective CaO-based CO2 sorbents are crucial to calcium looping, which is a CO2-capture technique that offers an effective and feasible way to achieve the goal of carbon neutrality. With the goal of enhancing CO2-capture performance, a template-free synthetic route was reported in this work on the basis of the Kirkendall effect that yields hollow, Ca2SiO4-stabilized CaO nanoparticles. The hollow CaO/Ca2SiO4 nanoparticle features thin, nanometer-scale shells, large surface area, and a homogeneous elemental distribution, which are essential characteristics for high-performance CO2 sorbents. The synthetic sorbent with 10 mol % SiO2 offers superior and durable CO2 uptake during calcium looping. The capacity of CO2 capture of the synthetic sorbents still maintains 0.573 gCO2 /gsorbent after the 20th cycle, exceeding that of other substances such as CaO/SiO2 synthesized via mechanical blending and CaCO3-derived sorbents by 195% and 290%, respectively. Detailed X-ray diffraction, N2 adsorption/desorption, transmission electron microscopy, and scanning electron microscopy analyses confirm that the unique hollow structure and thin shell of CaO/Ca2SiO4 nanoparticles are retained after the adsorption-desorption cycles. These results thus present an approach to obtain hollow nanostructured sorbents with better CO2 uptake performance, all without using templates or a high-temperature, long-term hydrothermal approach. |
doi_str_mv | 10.1021/acssuschemeng.0c07689 |
format | Article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acssuschemeng_0c07689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a77145720</sourcerecordid><originalsourceid>FETCH-LOGICAL-a193t-b76156dc2b68caa62f05c871e2b5a63c5190fbef66b6fbc10ad19cb1bcfb27533</originalsourceid><addsrcrecordid>eNpVkEFrwkAUhJfSQsX6Ewr7B6L7NmaTHMtSa0GaQ-w5vH1uNHZNJLtS8u-bood2LjPMYQY-xp5BzEFIWCB5f_F0sCfb7ueCRKqy_I5NJKgsEsssuf-TH9nM-6MYleexzGDCvrb2dHYYbLTqreXl0IaD9Y3nXc3XnXPdN9dYLDTKsimW_APb7ox9aMhZjp4j1wO5htC5gZcBzVivm_0h0nhGasLAdSF52fXGtuGJPdTovJ3dfMo-V69bvY42xdu7ftlECHkcIpMqSNSOpFEZISpZi4SyFKw0CaqYEshFbWytlFG1IRC4g5wMGKqNTJM4njK47o5sqmN36dvxrQJR_QKr_gGrbsDiH4n5Y1A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Template-Free Synthesis of Hollow CaO/Ca2SiO4 Nanoparticle as a Cyclically Stable High-Capacity CO2 Sorbent</title><source>American Chemical Society Journals</source><creator>Huang, Caifeng ; Xu, Min ; Huai, Xiulan ; Liu, Zhangli</creator><creatorcontrib>Huang, Caifeng ; Xu, Min ; Huai, Xiulan ; Liu, Zhangli</creatorcontrib><description>Cyclically stable and highly effective CaO-based CO2 sorbents are crucial to calcium looping, which is a CO2-capture technique that offers an effective and feasible way to achieve the goal of carbon neutrality. With the goal of enhancing CO2-capture performance, a template-free synthetic route was reported in this work on the basis of the Kirkendall effect that yields hollow, Ca2SiO4-stabilized CaO nanoparticles. The hollow CaO/Ca2SiO4 nanoparticle features thin, nanometer-scale shells, large surface area, and a homogeneous elemental distribution, which are essential characteristics for high-performance CO2 sorbents. The synthetic sorbent with 10 mol % SiO2 offers superior and durable CO2 uptake during calcium looping. The capacity of CO2 capture of the synthetic sorbents still maintains 0.573 gCO2 /gsorbent after the 20th cycle, exceeding that of other substances such as CaO/SiO2 synthesized via mechanical blending and CaCO3-derived sorbents by 195% and 290%, respectively. Detailed X-ray diffraction, N2 adsorption/desorption, transmission electron microscopy, and scanning electron microscopy analyses confirm that the unique hollow structure and thin shell of CaO/Ca2SiO4 nanoparticles are retained after the adsorption-desorption cycles. These results thus present an approach to obtain hollow nanostructured sorbents with better CO2 uptake performance, all without using templates or a high-temperature, long-term hydrothermal approach.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.0c07689</identifier><language>eng ; jpn</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry & engineering, 2021-02, Vol.9 (5), p.2171-2179</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4033-9204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.0c07689$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.0c07689$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Huang, Caifeng</creatorcontrib><creatorcontrib>Xu, Min</creatorcontrib><creatorcontrib>Huai, Xiulan</creatorcontrib><creatorcontrib>Liu, Zhangli</creatorcontrib><title>Template-Free Synthesis of Hollow CaO/Ca2SiO4 Nanoparticle as a Cyclically Stable High-Capacity CO2 Sorbent</title><title>ACS sustainable chemistry & engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Cyclically stable and highly effective CaO-based CO2 sorbents are crucial to calcium looping, which is a CO2-capture technique that offers an effective and feasible way to achieve the goal of carbon neutrality. With the goal of enhancing CO2-capture performance, a template-free synthetic route was reported in this work on the basis of the Kirkendall effect that yields hollow, Ca2SiO4-stabilized CaO nanoparticles. The hollow CaO/Ca2SiO4 nanoparticle features thin, nanometer-scale shells, large surface area, and a homogeneous elemental distribution, which are essential characteristics for high-performance CO2 sorbents. The synthetic sorbent with 10 mol % SiO2 offers superior and durable CO2 uptake during calcium looping. The capacity of CO2 capture of the synthetic sorbents still maintains 0.573 gCO2 /gsorbent after the 20th cycle, exceeding that of other substances such as CaO/SiO2 synthesized via mechanical blending and CaCO3-derived sorbents by 195% and 290%, respectively. Detailed X-ray diffraction, N2 adsorption/desorption, transmission electron microscopy, and scanning electron microscopy analyses confirm that the unique hollow structure and thin shell of CaO/Ca2SiO4 nanoparticles are retained after the adsorption-desorption cycles. These results thus present an approach to obtain hollow nanostructured sorbents with better CO2 uptake performance, all without using templates or a high-temperature, long-term hydrothermal approach.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpVkEFrwkAUhJfSQsX6Ewr7B6L7NmaTHMtSa0GaQ-w5vH1uNHZNJLtS8u-bood2LjPMYQY-xp5BzEFIWCB5f_F0sCfb7ueCRKqy_I5NJKgsEsssuf-TH9nM-6MYleexzGDCvrb2dHYYbLTqreXl0IaD9Y3nXc3XnXPdN9dYLDTKsimW_APb7ox9aMhZjp4j1wO5htC5gZcBzVivm_0h0nhGasLAdSF52fXGtuGJPdTovJ3dfMo-V69bvY42xdu7ftlECHkcIpMqSNSOpFEZISpZi4SyFKw0CaqYEshFbWytlFG1IRC4g5wMGKqNTJM4njK47o5sqmN36dvxrQJR_QKr_gGrbsDiH4n5Y1A</recordid><startdate>20210208</startdate><enddate>20210208</enddate><creator>Huang, Caifeng</creator><creator>Xu, Min</creator><creator>Huai, Xiulan</creator><creator>Liu, Zhangli</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-4033-9204</orcidid></search><sort><creationdate>20210208</creationdate><title>Template-Free Synthesis of Hollow CaO/Ca2SiO4 Nanoparticle as a Cyclically Stable High-Capacity CO2 Sorbent</title><author>Huang, Caifeng ; Xu, Min ; Huai, Xiulan ; Liu, Zhangli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a193t-b76156dc2b68caa62f05c871e2b5a63c5190fbef66b6fbc10ad19cb1bcfb27533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Caifeng</creatorcontrib><creatorcontrib>Xu, Min</creatorcontrib><creatorcontrib>Huai, Xiulan</creatorcontrib><creatorcontrib>Liu, Zhangli</creatorcontrib><jtitle>ACS sustainable chemistry & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Caifeng</au><au>Xu, Min</au><au>Huai, Xiulan</au><au>Liu, Zhangli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Template-Free Synthesis of Hollow CaO/Ca2SiO4 Nanoparticle as a Cyclically Stable High-Capacity CO2 Sorbent</atitle><jtitle>ACS sustainable chemistry & engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2021-02-08</date><risdate>2021</risdate><volume>9</volume><issue>5</issue><spage>2171</spage><epage>2179</epage><pages>2171-2179</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Cyclically stable and highly effective CaO-based CO2 sorbents are crucial to calcium looping, which is a CO2-capture technique that offers an effective and feasible way to achieve the goal of carbon neutrality. With the goal of enhancing CO2-capture performance, a template-free synthetic route was reported in this work on the basis of the Kirkendall effect that yields hollow, Ca2SiO4-stabilized CaO nanoparticles. The hollow CaO/Ca2SiO4 nanoparticle features thin, nanometer-scale shells, large surface area, and a homogeneous elemental distribution, which are essential characteristics for high-performance CO2 sorbents. The synthetic sorbent with 10 mol % SiO2 offers superior and durable CO2 uptake during calcium looping. The capacity of CO2 capture of the synthetic sorbents still maintains 0.573 gCO2 /gsorbent after the 20th cycle, exceeding that of other substances such as CaO/SiO2 synthesized via mechanical blending and CaCO3-derived sorbents by 195% and 290%, respectively. Detailed X-ray diffraction, N2 adsorption/desorption, transmission electron microscopy, and scanning electron microscopy analyses confirm that the unique hollow structure and thin shell of CaO/Ca2SiO4 nanoparticles are retained after the adsorption-desorption cycles. These results thus present an approach to obtain hollow nanostructured sorbents with better CO2 uptake performance, all without using templates or a high-temperature, long-term hydrothermal approach.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.0c07689</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4033-9204</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-0485 |
ispartof | ACS sustainable chemistry & engineering, 2021-02, Vol.9 (5), p.2171-2179 |
issn | 2168-0485 2168-0485 |
language | eng ; jpn |
recordid | cdi_acs_journals_10_1021_acssuschemeng_0c07689 |
source | American Chemical Society Journals |
title | Template-Free Synthesis of Hollow CaO/Ca2SiO4 Nanoparticle as a Cyclically Stable High-Capacity CO2 Sorbent |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A39%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Template-Free%20Synthesis%20of%20Hollow%20CaO/Ca2SiO4%20Nanoparticle%20as%20a%20Cyclically%20Stable%20High-Capacity%20CO2%20Sorbent&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Huang,%20Caifeng&rft.date=2021-02-08&rft.volume=9&rft.issue=5&rft.spage=2171&rft.epage=2179&rft.pages=2171-2179&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.0c07689&rft_dat=%3Cacs%3Ea77145720%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |