Crystal-Plane Effects of CeO2{110} and CeO2{100} on Photocatalytic CO2 Reduction: Synergistic Interactions of Oxygen Defects and Hydroxyl Groups

For photocatalytic CO2 reduction, the synergistic effect of Lewis acidity and basicity on CO2 activation is worthy of study. On the basis of a large number of oxygen defects (Lewis acidity) and hydroxyl groups (Lewis basicity) on the CeO2 surface, CeO2{110} and CeO2{100} crystal planes were develope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2020-09, Vol.8 (38), p.14397-14406
Hauptverfasser: Zhu, Chengzhang, Wei, Xiaoqian, Li, Wanqin, Pu, Yu, Sun, Jingfang, Tang, Kunlin, Wan, Haiqin, Ge, Chengyan, Zou, Weixin, Dong, Lin
Format: Artikel
Sprache:eng ; jpn
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14406
container_issue 38
container_start_page 14397
container_title ACS sustainable chemistry & engineering
container_volume 8
creator Zhu, Chengzhang
Wei, Xiaoqian
Li, Wanqin
Pu, Yu
Sun, Jingfang
Tang, Kunlin
Wan, Haiqin
Ge, Chengyan
Zou, Weixin
Dong, Lin
description For photocatalytic CO2 reduction, the synergistic effect of Lewis acidity and basicity on CO2 activation is worthy of study. On the basis of a large number of oxygen defects (Lewis acidity) and hydroxyl groups (Lewis basicity) on the CeO2 surface, CeO2{110} and CeO2{100} crystal planes were developed to investigate the synergistic effect on photocatalytic CO2 reduction. Compared with CeO2{100}, the surface oxygen defects were prone to generate on CeO2{110}, leading to available visible light absorption and faster photogenerated charge transfer. The experimental results and DFT calculations showed that the OH species on the CeO2{110} surface were richer and provided more electron density, i.e., Lewis basicity. Furthermore, the possible adsorption intermediate was investigated and suggested that CeO2{110} was more beneficial for the adsorption and activation of CO2 reactant than CeO2{100}, resulting in generation of carboxylate species and •CO2 – radicals, instead of carbonate. Under the control of surface Lewis acidity and basicity, CeO2{110} had superior photocatalytic performance of CO2 reduction than the {100} plane.
doi_str_mv 10.1021/acssuschemeng.0c04205
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acssuschemeng_0c04205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a047009579</sourcerecordid><originalsourceid>FETCH-LOGICAL-a193t-e6fd9d92aa1b972ed2af73f55b336e7db29c4199da74f16fa8c3c4f9b92dadaa3</originalsourceid><addsrcrecordid>eNpVkNtKw0AURQdRsNR-gjA_kDqX3MY3ibUtFFK8PIeTufRCnJHMBBrEf_CTTW0f9Lycs9mcvWEhdEvJlBJG70B633m51e_abqZEkpiR5AKNGE3ziMR5cvnnvkYT7_dkGCE4y-kIfRdt7wM00boBq_HMGC2Dx87gQpfsk1LyhcGqsyKDchavty44CcNbH3YSFyXDz1p1MuycvccvvdXtZueP1tIG3cKv8RtaHvqNtvhRn2qOyYtete7QN3jeuu7D36ArA43Xk_Meo7en2WuxiFblfFk8rCKggodIp0YJJRgArUXGtGJgMm6SpOY81ZmqmZAxFUJBFhuaGsgll7ERtWAKFAAfI3rKHQBWe9e1dmirKKmOVKt_VKszVf4DnSlxcA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Crystal-Plane Effects of CeO2{110} and CeO2{100} on Photocatalytic CO2 Reduction: Synergistic Interactions of Oxygen Defects and Hydroxyl Groups</title><source>ACS Journals: American Chemical Society Web Editions</source><creator>Zhu, Chengzhang ; Wei, Xiaoqian ; Li, Wanqin ; Pu, Yu ; Sun, Jingfang ; Tang, Kunlin ; Wan, Haiqin ; Ge, Chengyan ; Zou, Weixin ; Dong, Lin</creator><creatorcontrib>Zhu, Chengzhang ; Wei, Xiaoqian ; Li, Wanqin ; Pu, Yu ; Sun, Jingfang ; Tang, Kunlin ; Wan, Haiqin ; Ge, Chengyan ; Zou, Weixin ; Dong, Lin</creatorcontrib><description>For photocatalytic CO2 reduction, the synergistic effect of Lewis acidity and basicity on CO2 activation is worthy of study. On the basis of a large number of oxygen defects (Lewis acidity) and hydroxyl groups (Lewis basicity) on the CeO2 surface, CeO2{110} and CeO2{100} crystal planes were developed to investigate the synergistic effect on photocatalytic CO2 reduction. Compared with CeO2{100}, the surface oxygen defects were prone to generate on CeO2{110}, leading to available visible light absorption and faster photogenerated charge transfer. The experimental results and DFT calculations showed that the OH species on the CeO2{110} surface were richer and provided more electron density, i.e., Lewis basicity. Furthermore, the possible adsorption intermediate was investigated and suggested that CeO2{110} was more beneficial for the adsorption and activation of CO2 reactant than CeO2{100}, resulting in generation of carboxylate species and •CO2 – radicals, instead of carbonate. Under the control of surface Lewis acidity and basicity, CeO2{110} had superior photocatalytic performance of CO2 reduction than the {100} plane.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.0c04205</identifier><language>eng ; jpn</language><publisher>American Chemical Society</publisher><ispartof>ACS sustainable chemistry &amp; engineering, 2020-09, Vol.8 (38), p.14397-14406</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8393-6669 ; 0000-0003-0639-4576 ; 0000-0003-1963-4874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.0c04205$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.0c04205$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Zhu, Chengzhang</creatorcontrib><creatorcontrib>Wei, Xiaoqian</creatorcontrib><creatorcontrib>Li, Wanqin</creatorcontrib><creatorcontrib>Pu, Yu</creatorcontrib><creatorcontrib>Sun, Jingfang</creatorcontrib><creatorcontrib>Tang, Kunlin</creatorcontrib><creatorcontrib>Wan, Haiqin</creatorcontrib><creatorcontrib>Ge, Chengyan</creatorcontrib><creatorcontrib>Zou, Weixin</creatorcontrib><creatorcontrib>Dong, Lin</creatorcontrib><title>Crystal-Plane Effects of CeO2{110} and CeO2{100} on Photocatalytic CO2 Reduction: Synergistic Interactions of Oxygen Defects and Hydroxyl Groups</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>For photocatalytic CO2 reduction, the synergistic effect of Lewis acidity and basicity on CO2 activation is worthy of study. On the basis of a large number of oxygen defects (Lewis acidity) and hydroxyl groups (Lewis basicity) on the CeO2 surface, CeO2{110} and CeO2{100} crystal planes were developed to investigate the synergistic effect on photocatalytic CO2 reduction. Compared with CeO2{100}, the surface oxygen defects were prone to generate on CeO2{110}, leading to available visible light absorption and faster photogenerated charge transfer. The experimental results and DFT calculations showed that the OH species on the CeO2{110} surface were richer and provided more electron density, i.e., Lewis basicity. Furthermore, the possible adsorption intermediate was investigated and suggested that CeO2{110} was more beneficial for the adsorption and activation of CO2 reactant than CeO2{100}, resulting in generation of carboxylate species and •CO2 – radicals, instead of carbonate. Under the control of surface Lewis acidity and basicity, CeO2{110} had superior photocatalytic performance of CO2 reduction than the {100} plane.</description><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpVkNtKw0AURQdRsNR-gjA_kDqX3MY3ibUtFFK8PIeTufRCnJHMBBrEf_CTTW0f9Lycs9mcvWEhdEvJlBJG70B633m51e_abqZEkpiR5AKNGE3ziMR5cvnnvkYT7_dkGCE4y-kIfRdt7wM00boBq_HMGC2Dx87gQpfsk1LyhcGqsyKDchavty44CcNbH3YSFyXDz1p1MuycvccvvdXtZueP1tIG3cKv8RtaHvqNtvhRn2qOyYtete7QN3jeuu7D36ArA43Xk_Meo7en2WuxiFblfFk8rCKggodIp0YJJRgArUXGtGJgMm6SpOY81ZmqmZAxFUJBFhuaGsgll7ERtWAKFAAfI3rKHQBWe9e1dmirKKmOVKt_VKszVf4DnSlxcA</recordid><startdate>20200928</startdate><enddate>20200928</enddate><creator>Zhu, Chengzhang</creator><creator>Wei, Xiaoqian</creator><creator>Li, Wanqin</creator><creator>Pu, Yu</creator><creator>Sun, Jingfang</creator><creator>Tang, Kunlin</creator><creator>Wan, Haiqin</creator><creator>Ge, Chengyan</creator><creator>Zou, Weixin</creator><creator>Dong, Lin</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-8393-6669</orcidid><orcidid>https://orcid.org/0000-0003-0639-4576</orcidid><orcidid>https://orcid.org/0000-0003-1963-4874</orcidid></search><sort><creationdate>20200928</creationdate><title>Crystal-Plane Effects of CeO2{110} and CeO2{100} on Photocatalytic CO2 Reduction: Synergistic Interactions of Oxygen Defects and Hydroxyl Groups</title><author>Zhu, Chengzhang ; Wei, Xiaoqian ; Li, Wanqin ; Pu, Yu ; Sun, Jingfang ; Tang, Kunlin ; Wan, Haiqin ; Ge, Chengyan ; Zou, Weixin ; Dong, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a193t-e6fd9d92aa1b972ed2af73f55b336e7db29c4199da74f16fa8c3c4f9b92dadaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Chengzhang</creatorcontrib><creatorcontrib>Wei, Xiaoqian</creatorcontrib><creatorcontrib>Li, Wanqin</creatorcontrib><creatorcontrib>Pu, Yu</creatorcontrib><creatorcontrib>Sun, Jingfang</creatorcontrib><creatorcontrib>Tang, Kunlin</creatorcontrib><creatorcontrib>Wan, Haiqin</creatorcontrib><creatorcontrib>Ge, Chengyan</creatorcontrib><creatorcontrib>Zou, Weixin</creatorcontrib><creatorcontrib>Dong, Lin</creatorcontrib><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Chengzhang</au><au>Wei, Xiaoqian</au><au>Li, Wanqin</au><au>Pu, Yu</au><au>Sun, Jingfang</au><au>Tang, Kunlin</au><au>Wan, Haiqin</au><au>Ge, Chengyan</au><au>Zou, Weixin</au><au>Dong, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal-Plane Effects of CeO2{110} and CeO2{100} on Photocatalytic CO2 Reduction: Synergistic Interactions of Oxygen Defects and Hydroxyl Groups</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2020-09-28</date><risdate>2020</risdate><volume>8</volume><issue>38</issue><spage>14397</spage><epage>14406</epage><pages>14397-14406</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>For photocatalytic CO2 reduction, the synergistic effect of Lewis acidity and basicity on CO2 activation is worthy of study. On the basis of a large number of oxygen defects (Lewis acidity) and hydroxyl groups (Lewis basicity) on the CeO2 surface, CeO2{110} and CeO2{100} crystal planes were developed to investigate the synergistic effect on photocatalytic CO2 reduction. Compared with CeO2{100}, the surface oxygen defects were prone to generate on CeO2{110}, leading to available visible light absorption and faster photogenerated charge transfer. The experimental results and DFT calculations showed that the OH species on the CeO2{110} surface were richer and provided more electron density, i.e., Lewis basicity. Furthermore, the possible adsorption intermediate was investigated and suggested that CeO2{110} was more beneficial for the adsorption and activation of CO2 reactant than CeO2{100}, resulting in generation of carboxylate species and •CO2 – radicals, instead of carbonate. Under the control of surface Lewis acidity and basicity, CeO2{110} had superior photocatalytic performance of CO2 reduction than the {100} plane.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.0c04205</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8393-6669</orcidid><orcidid>https://orcid.org/0000-0003-0639-4576</orcidid><orcidid>https://orcid.org/0000-0003-1963-4874</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2020-09, Vol.8 (38), p.14397-14406
issn 2168-0485
2168-0485
language eng ; jpn
recordid cdi_acs_journals_10_1021_acssuschemeng_0c04205
source ACS Journals: American Chemical Society Web Editions
title Crystal-Plane Effects of CeO2{110} and CeO2{100} on Photocatalytic CO2 Reduction: Synergistic Interactions of Oxygen Defects and Hydroxyl Groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A25%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal-Plane%20Effects%20of%20CeO2%7B110%7D%20and%20CeO2%7B100%7D%20on%20Photocatalytic%20CO2%20Reduction:%20Synergistic%20Interactions%20of%20Oxygen%20Defects%20and%20Hydroxyl%20Groups&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Zhu,%20Chengzhang&rft.date=2020-09-28&rft.volume=8&rft.issue=38&rft.spage=14397&rft.epage=14406&rft.pages=14397-14406&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.0c04205&rft_dat=%3Cacs%3Ea047009579%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true