NO2 Gas Sensing Mechanism of ZnO Thin-Film Transducers: Physical Experiment and Theoretical Correlation Study

In this work, ZnO thin films were investigated to sense NO2, a gas exhausted by the most common combustion systems polluting the environment. To this end, ZnO thin films were grown by RF sputtering on properly designed and patterned substrates to allow the measurement of the electrical response of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sensors 2016-04, Vol.1 (4), p.406-412
Hauptverfasser: Tamvakos, Athanasios, Korir, Kiprono, Tamvakos, Dimitrios, Calestani, Davide, Cicero, Giancarlo, Pullini, Daniele
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 412
container_issue 4
container_start_page 406
container_title ACS sensors
container_volume 1
creator Tamvakos, Athanasios
Korir, Kiprono
Tamvakos, Dimitrios
Calestani, Davide
Cicero, Giancarlo
Pullini, Daniele
description In this work, ZnO thin films were investigated to sense NO2, a gas exhausted by the most common combustion systems polluting the environment. To this end, ZnO thin films were grown by RF sputtering on properly designed and patterned substrates to allow the measurement of the electrical response of the material when exposed to different concentrations of the gas. X-ray diffraction was carried out to correlate the material’s electrical response to the morphological and microstructural features of the sensing materials. Electrical conductivity measurements showed that the transducer fabricated in this work exhibits the optimal performance when heated at 200 °C, and the detection of 0.1 ppm concentration of NO2 was possible. Ab initio modeling allowed the understanding of the sensing mechanism driven by the competitive adsorption of NO2 and atmospheric oxygen mediated by heat. The combined theoretical and experimental study here reported provides insights into the sensing mechanism which will aid the optimization of ZnO transducer design for the quantitative measurement of NO2 exhausted by combustion systems which will be used, ultimately, for the optimized adjustment of combustion resulting into a reduced pollutants and greenhouse gases emission.
doi_str_mv 10.1021/acssensors.6b00051
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acssensors_6b00051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c356871838</sourcerecordid><originalsourceid>FETCH-LOGICAL-a260t-fae95a62c32cce8198c10cf1dc5344a3ab5a8ed67f46d777114936269e396faf3</originalsourceid><addsrcrecordid>eNpNkM9Kw0AYxBdRsNS-gKd9gdT9k2yy3qS0tVCt0HrxEr5uvrVbko3sJmDf3qgFPc3ADDPwI-SWsylngt-BiRF9bEOcqj1jLOMXZCRkrhOpdHr5z1-TSYzHocIzJbKCjUjzvBF0CZFuhwXn3-kTmgN4FxvaWvrmN3R3cD5ZuLqhuwA-Vr3BEO_py-EUnYGazj8_MLgGfUfBV0Md24DdTzRrQ8AaOtd6uu366nRDrizUESdnHZPXxXw3e0zWm-Vq9rBOQCjWJRZQZ6CEkcIYLLguDGfG8spkMk1Bwj6DAiuV21RVeZ5znmqphNIotbJg5ZhMf3cHNOWx7YMf3krOym9e5R-v8sxLfgE8YWIy</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>NO2 Gas Sensing Mechanism of ZnO Thin-Film Transducers: Physical Experiment and Theoretical Correlation Study</title><source>American Chemical Society Journals</source><creator>Tamvakos, Athanasios ; Korir, Kiprono ; Tamvakos, Dimitrios ; Calestani, Davide ; Cicero, Giancarlo ; Pullini, Daniele</creator><creatorcontrib>Tamvakos, Athanasios ; Korir, Kiprono ; Tamvakos, Dimitrios ; Calestani, Davide ; Cicero, Giancarlo ; Pullini, Daniele</creatorcontrib><description>In this work, ZnO thin films were investigated to sense NO2, a gas exhausted by the most common combustion systems polluting the environment. To this end, ZnO thin films were grown by RF sputtering on properly designed and patterned substrates to allow the measurement of the electrical response of the material when exposed to different concentrations of the gas. X-ray diffraction was carried out to correlate the material’s electrical response to the morphological and microstructural features of the sensing materials. Electrical conductivity measurements showed that the transducer fabricated in this work exhibits the optimal performance when heated at 200 °C, and the detection of 0.1 ppm concentration of NO2 was possible. Ab initio modeling allowed the understanding of the sensing mechanism driven by the competitive adsorption of NO2 and atmospheric oxygen mediated by heat. The combined theoretical and experimental study here reported provides insights into the sensing mechanism which will aid the optimization of ZnO transducer design for the quantitative measurement of NO2 exhausted by combustion systems which will be used, ultimately, for the optimized adjustment of combustion resulting into a reduced pollutants and greenhouse gases emission.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.6b00051</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS sensors, 2016-04, Vol.1 (4), p.406-412</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssensors.6b00051$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssensors.6b00051$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Tamvakos, Athanasios</creatorcontrib><creatorcontrib>Korir, Kiprono</creatorcontrib><creatorcontrib>Tamvakos, Dimitrios</creatorcontrib><creatorcontrib>Calestani, Davide</creatorcontrib><creatorcontrib>Cicero, Giancarlo</creatorcontrib><creatorcontrib>Pullini, Daniele</creatorcontrib><title>NO2 Gas Sensing Mechanism of ZnO Thin-Film Transducers: Physical Experiment and Theoretical Correlation Study</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>In this work, ZnO thin films were investigated to sense NO2, a gas exhausted by the most common combustion systems polluting the environment. To this end, ZnO thin films were grown by RF sputtering on properly designed and patterned substrates to allow the measurement of the electrical response of the material when exposed to different concentrations of the gas. X-ray diffraction was carried out to correlate the material’s electrical response to the morphological and microstructural features of the sensing materials. Electrical conductivity measurements showed that the transducer fabricated in this work exhibits the optimal performance when heated at 200 °C, and the detection of 0.1 ppm concentration of NO2 was possible. Ab initio modeling allowed the understanding of the sensing mechanism driven by the competitive adsorption of NO2 and atmospheric oxygen mediated by heat. The combined theoretical and experimental study here reported provides insights into the sensing mechanism which will aid the optimization of ZnO transducer design for the quantitative measurement of NO2 exhausted by combustion systems which will be used, ultimately, for the optimized adjustment of combustion resulting into a reduced pollutants and greenhouse gases emission.</description><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkM9Kw0AYxBdRsNS-gKd9gdT9k2yy3qS0tVCt0HrxEr5uvrVbko3sJmDf3qgFPc3ADDPwI-SWsylngt-BiRF9bEOcqj1jLOMXZCRkrhOpdHr5z1-TSYzHocIzJbKCjUjzvBF0CZFuhwXn3-kTmgN4FxvaWvrmN3R3cD5ZuLqhuwA-Vr3BEO_py-EUnYGazj8_MLgGfUfBV0Md24DdTzRrQ8AaOtd6uu366nRDrizUESdnHZPXxXw3e0zWm-Vq9rBOQCjWJRZQZ6CEkcIYLLguDGfG8spkMk1Bwj6DAiuV21RVeZ5znmqphNIotbJg5ZhMf3cHNOWx7YMf3krOym9e5R-v8sxLfgE8YWIy</recordid><startdate>20160422</startdate><enddate>20160422</enddate><creator>Tamvakos, Athanasios</creator><creator>Korir, Kiprono</creator><creator>Tamvakos, Dimitrios</creator><creator>Calestani, Davide</creator><creator>Cicero, Giancarlo</creator><creator>Pullini, Daniele</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20160422</creationdate><title>NO2 Gas Sensing Mechanism of ZnO Thin-Film Transducers: Physical Experiment and Theoretical Correlation Study</title><author>Tamvakos, Athanasios ; Korir, Kiprono ; Tamvakos, Dimitrios ; Calestani, Davide ; Cicero, Giancarlo ; Pullini, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a260t-fae95a62c32cce8198c10cf1dc5344a3ab5a8ed67f46d777114936269e396faf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamvakos, Athanasios</creatorcontrib><creatorcontrib>Korir, Kiprono</creatorcontrib><creatorcontrib>Tamvakos, Dimitrios</creatorcontrib><creatorcontrib>Calestani, Davide</creatorcontrib><creatorcontrib>Cicero, Giancarlo</creatorcontrib><creatorcontrib>Pullini, Daniele</creatorcontrib><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamvakos, Athanasios</au><au>Korir, Kiprono</au><au>Tamvakos, Dimitrios</au><au>Calestani, Davide</au><au>Cicero, Giancarlo</au><au>Pullini, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NO2 Gas Sensing Mechanism of ZnO Thin-Film Transducers: Physical Experiment and Theoretical Correlation Study</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2016-04-22</date><risdate>2016</risdate><volume>1</volume><issue>4</issue><spage>406</spage><epage>412</epage><pages>406-412</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>In this work, ZnO thin films were investigated to sense NO2, a gas exhausted by the most common combustion systems polluting the environment. To this end, ZnO thin films were grown by RF sputtering on properly designed and patterned substrates to allow the measurement of the electrical response of the material when exposed to different concentrations of the gas. X-ray diffraction was carried out to correlate the material’s electrical response to the morphological and microstructural features of the sensing materials. Electrical conductivity measurements showed that the transducer fabricated in this work exhibits the optimal performance when heated at 200 °C, and the detection of 0.1 ppm concentration of NO2 was possible. Ab initio modeling allowed the understanding of the sensing mechanism driven by the competitive adsorption of NO2 and atmospheric oxygen mediated by heat. The combined theoretical and experimental study here reported provides insights into the sensing mechanism which will aid the optimization of ZnO transducer design for the quantitative measurement of NO2 exhausted by combustion systems which will be used, ultimately, for the optimized adjustment of combustion resulting into a reduced pollutants and greenhouse gases emission.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssensors.6b00051</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2379-3694
ispartof ACS sensors, 2016-04, Vol.1 (4), p.406-412
issn 2379-3694
2379-3694
language eng
recordid cdi_acs_journals_10_1021_acssensors_6b00051
source American Chemical Society Journals
title NO2 Gas Sensing Mechanism of ZnO Thin-Film Transducers: Physical Experiment and Theoretical Correlation Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A11%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NO2%20Gas%20Sensing%20Mechanism%20of%20ZnO%20Thin-Film%20Transducers:%20Physical%20Experiment%20and%20Theoretical%20Correlation%20Study&rft.jtitle=ACS%20sensors&rft.au=Tamvakos,%20Athanasios&rft.date=2016-04-22&rft.volume=1&rft.issue=4&rft.spage=406&rft.epage=412&rft.pages=406-412&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.6b00051&rft_dat=%3Cacs%3Ec356871838%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true