Tunable Pseudocapacitance in 3D TiO2−δ Nanomembranes Enabling Superior Lithium Storage Performance

Nanostructured TiO2 of different polymorphs, mostly prepared by hydro/solvothermal methods, have been extensively studied for more than a decade as anode materials in lithium ion batteries. Enormous efforts have been devoted to improving the electrical conductivity and lithium ion diffusivity in che...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2017-01, Vol.11 (1), p.821-830
Hauptverfasser: Huang, Shaozhuan, Zhang, Lin, Lu, Xueyi, Liu, Lifeng, Liu, Lixiang, Sun, Xiaolei, Yin, Yin, Oswald, Steffen, Zou, Zhaoyong, Ding, Fei, Schmidt, Oliver G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 830
container_issue 1
container_start_page 821
container_title ACS nano
container_volume 11
creator Huang, Shaozhuan
Zhang, Lin
Lu, Xueyi
Liu, Lifeng
Liu, Lixiang
Sun, Xiaolei
Yin, Yin
Oswald, Steffen
Zou, Zhaoyong
Ding, Fei
Schmidt, Oliver G
description Nanostructured TiO2 of different polymorphs, mostly prepared by hydro/solvothermal methods, have been extensively studied for more than a decade as anode materials in lithium ion batteries. Enormous efforts have been devoted to improving the electrical conductivity and lithium ion diffusivity in chemically synthesized TiO2 nanostructures. In this work we demonstrate that 3D Ti3+-self-doped TiO2 (TiO2−δ) nanomembranes, which are prepared by physical vapor deposition combined with strain-released rolled-up technology, have a great potential to address several of the long-standing challenges associated with TiO2 anodes. The intrinsic electrical conductivity of the TiO2 layer can be significantly improved by the in situ generated Ti3+, and the amorphous, thin TiO2 nanomembrane provides a shortened Li+ diffusion pathway. The fabricated material shows a favorable electrochemical reaction mechanism for lithium storage. Further, post-treatments are employed to adjust the Ti3+ concentration and crystallinity degree in TiO2 nanomembranes, providing an opportunity to investigate the important influences of Ti3+ self-doping and amorphous structures on the electrochemical processes. With these experiments, the pseudocapacitance contributions in TiO2 nanomembranes with different crystallinity degree are quantified and verified by an in-depth kinetics analysis. Additionally, an ultrathin metallic Ti layer can be included, which further improves the lithium storage properties of the TiO2, giving rise to the state-of-the-art capacity (200 mAh g–1 at 1 C), excellent rate capability (up to 50 C), and ultralong lifetime (for 5000 cycles at 10 C, with an extraordinary retention of 100%) of TiO2 anodes.
doi_str_mv 10.1021/acsnano.6b07274
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsnano_6b07274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b945619415</sourcerecordid><originalsourceid>FETCH-LOGICAL-a224t-87ab1e93395e164f62b24f60b0991dc5e728f96707615b97e713c6b158d751013</originalsourceid><addsrcrecordid>eNo9kEFOwzAQRS0EEqWwZus9SvHYsR0vUSkFqaJILRK7yE4mxVXjVE5yB9achXNwCE5CKio282fz35ceIdfAJsA43NqiDTY0E-WY5jo9ISMwQiUsU2-n_7-Ec3LRtlvGpM60GhFc98G6HdKXFvuyKezeFr6zoUDqAxX3dO2X_Ofj8_uLPg_0GmsXbcCWzg41HzZ01e8x-ibShe_efV_TVddEuxmIGKsm1gfWJTmr7K7Fq2OOyevDbD19TBbL-dP0bpFYztMuybR1gEYIIxFUWinu-HCZY8ZAWUjUPKuM0kwrkM5o1CAK5UBmpZbAQIzJzR93kJFvmz6GYS0Hlh8M5UdD-dGQ-AXiIFzK</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tunable Pseudocapacitance in 3D TiO2−δ Nanomembranes Enabling Superior Lithium Storage Performance</title><source>ACS Publications</source><creator>Huang, Shaozhuan ; Zhang, Lin ; Lu, Xueyi ; Liu, Lifeng ; Liu, Lixiang ; Sun, Xiaolei ; Yin, Yin ; Oswald, Steffen ; Zou, Zhaoyong ; Ding, Fei ; Schmidt, Oliver G</creator><creatorcontrib>Huang, Shaozhuan ; Zhang, Lin ; Lu, Xueyi ; Liu, Lifeng ; Liu, Lixiang ; Sun, Xiaolei ; Yin, Yin ; Oswald, Steffen ; Zou, Zhaoyong ; Ding, Fei ; Schmidt, Oliver G</creatorcontrib><description>Nanostructured TiO2 of different polymorphs, mostly prepared by hydro/solvothermal methods, have been extensively studied for more than a decade as anode materials in lithium ion batteries. Enormous efforts have been devoted to improving the electrical conductivity and lithium ion diffusivity in chemically synthesized TiO2 nanostructures. In this work we demonstrate that 3D Ti3+-self-doped TiO2 (TiO2−δ) nanomembranes, which are prepared by physical vapor deposition combined with strain-released rolled-up technology, have a great potential to address several of the long-standing challenges associated with TiO2 anodes. The intrinsic electrical conductivity of the TiO2 layer can be significantly improved by the in situ generated Ti3+, and the amorphous, thin TiO2 nanomembrane provides a shortened Li+ diffusion pathway. The fabricated material shows a favorable electrochemical reaction mechanism for lithium storage. Further, post-treatments are employed to adjust the Ti3+ concentration and crystallinity degree in TiO2 nanomembranes, providing an opportunity to investigate the important influences of Ti3+ self-doping and amorphous structures on the electrochemical processes. With these experiments, the pseudocapacitance contributions in TiO2 nanomembranes with different crystallinity degree are quantified and verified by an in-depth kinetics analysis. Additionally, an ultrathin metallic Ti layer can be included, which further improves the lithium storage properties of the TiO2, giving rise to the state-of-the-art capacity (200 mAh g–1 at 1 C), excellent rate capability (up to 50 C), and ultralong lifetime (for 5000 cycles at 10 C, with an extraordinary retention of 100%) of TiO2 anodes.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.6b07274</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2017-01, Vol.11 (1), p.821-830</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2732-7399 ; 0000-0001-6327-1527 ; 0000-0002-4188-6421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.6b07274$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.6b07274$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,27063,27911,27912,56725,56775</link.rule.ids></links><search><creatorcontrib>Huang, Shaozhuan</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Lu, Xueyi</creatorcontrib><creatorcontrib>Liu, Lifeng</creatorcontrib><creatorcontrib>Liu, Lixiang</creatorcontrib><creatorcontrib>Sun, Xiaolei</creatorcontrib><creatorcontrib>Yin, Yin</creatorcontrib><creatorcontrib>Oswald, Steffen</creatorcontrib><creatorcontrib>Zou, Zhaoyong</creatorcontrib><creatorcontrib>Ding, Fei</creatorcontrib><creatorcontrib>Schmidt, Oliver G</creatorcontrib><title>Tunable Pseudocapacitance in 3D TiO2−δ Nanomembranes Enabling Superior Lithium Storage Performance</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Nanostructured TiO2 of different polymorphs, mostly prepared by hydro/solvothermal methods, have been extensively studied for more than a decade as anode materials in lithium ion batteries. Enormous efforts have been devoted to improving the electrical conductivity and lithium ion diffusivity in chemically synthesized TiO2 nanostructures. In this work we demonstrate that 3D Ti3+-self-doped TiO2 (TiO2−δ) nanomembranes, which are prepared by physical vapor deposition combined with strain-released rolled-up technology, have a great potential to address several of the long-standing challenges associated with TiO2 anodes. The intrinsic electrical conductivity of the TiO2 layer can be significantly improved by the in situ generated Ti3+, and the amorphous, thin TiO2 nanomembrane provides a shortened Li+ diffusion pathway. The fabricated material shows a favorable electrochemical reaction mechanism for lithium storage. Further, post-treatments are employed to adjust the Ti3+ concentration and crystallinity degree in TiO2 nanomembranes, providing an opportunity to investigate the important influences of Ti3+ self-doping and amorphous structures on the electrochemical processes. With these experiments, the pseudocapacitance contributions in TiO2 nanomembranes with different crystallinity degree are quantified and verified by an in-depth kinetics analysis. Additionally, an ultrathin metallic Ti layer can be included, which further improves the lithium storage properties of the TiO2, giving rise to the state-of-the-art capacity (200 mAh g–1 at 1 C), excellent rate capability (up to 50 C), and ultralong lifetime (for 5000 cycles at 10 C, with an extraordinary retention of 100%) of TiO2 anodes.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kEFOwzAQRS0EEqWwZus9SvHYsR0vUSkFqaJILRK7yE4mxVXjVE5yB9achXNwCE5CKio282fz35ceIdfAJsA43NqiDTY0E-WY5jo9ISMwQiUsU2-n_7-Ec3LRtlvGpM60GhFc98G6HdKXFvuyKezeFr6zoUDqAxX3dO2X_Ofj8_uLPg_0GmsXbcCWzg41HzZ01e8x-ibShe_efV_TVddEuxmIGKsm1gfWJTmr7K7Fq2OOyevDbD19TBbL-dP0bpFYztMuybR1gEYIIxFUWinu-HCZY8ZAWUjUPKuM0kwrkM5o1CAK5UBmpZbAQIzJzR93kJFvmz6GYS0Hlh8M5UdD-dGQ-AXiIFzK</recordid><startdate>20170124</startdate><enddate>20170124</enddate><creator>Huang, Shaozhuan</creator><creator>Zhang, Lin</creator><creator>Lu, Xueyi</creator><creator>Liu, Lifeng</creator><creator>Liu, Lixiang</creator><creator>Sun, Xiaolei</creator><creator>Yin, Yin</creator><creator>Oswald, Steffen</creator><creator>Zou, Zhaoyong</creator><creator>Ding, Fei</creator><creator>Schmidt, Oliver G</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-2732-7399</orcidid><orcidid>https://orcid.org/0000-0001-6327-1527</orcidid><orcidid>https://orcid.org/0000-0002-4188-6421</orcidid></search><sort><creationdate>20170124</creationdate><title>Tunable Pseudocapacitance in 3D TiO2−δ Nanomembranes Enabling Superior Lithium Storage Performance</title><author>Huang, Shaozhuan ; Zhang, Lin ; Lu, Xueyi ; Liu, Lifeng ; Liu, Lixiang ; Sun, Xiaolei ; Yin, Yin ; Oswald, Steffen ; Zou, Zhaoyong ; Ding, Fei ; Schmidt, Oliver G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a224t-87ab1e93395e164f62b24f60b0991dc5e728f96707615b97e713c6b158d751013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Shaozhuan</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Lu, Xueyi</creatorcontrib><creatorcontrib>Liu, Lifeng</creatorcontrib><creatorcontrib>Liu, Lixiang</creatorcontrib><creatorcontrib>Sun, Xiaolei</creatorcontrib><creatorcontrib>Yin, Yin</creatorcontrib><creatorcontrib>Oswald, Steffen</creatorcontrib><creatorcontrib>Zou, Zhaoyong</creatorcontrib><creatorcontrib>Ding, Fei</creatorcontrib><creatorcontrib>Schmidt, Oliver G</creatorcontrib><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Shaozhuan</au><au>Zhang, Lin</au><au>Lu, Xueyi</au><au>Liu, Lifeng</au><au>Liu, Lixiang</au><au>Sun, Xiaolei</au><au>Yin, Yin</au><au>Oswald, Steffen</au><au>Zou, Zhaoyong</au><au>Ding, Fei</au><au>Schmidt, Oliver G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable Pseudocapacitance in 3D TiO2−δ Nanomembranes Enabling Superior Lithium Storage Performance</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2017-01-24</date><risdate>2017</risdate><volume>11</volume><issue>1</issue><spage>821</spage><epage>830</epage><pages>821-830</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Nanostructured TiO2 of different polymorphs, mostly prepared by hydro/solvothermal methods, have been extensively studied for more than a decade as anode materials in lithium ion batteries. Enormous efforts have been devoted to improving the electrical conductivity and lithium ion diffusivity in chemically synthesized TiO2 nanostructures. In this work we demonstrate that 3D Ti3+-self-doped TiO2 (TiO2−δ) nanomembranes, which are prepared by physical vapor deposition combined with strain-released rolled-up technology, have a great potential to address several of the long-standing challenges associated with TiO2 anodes. The intrinsic electrical conductivity of the TiO2 layer can be significantly improved by the in situ generated Ti3+, and the amorphous, thin TiO2 nanomembrane provides a shortened Li+ diffusion pathway. The fabricated material shows a favorable electrochemical reaction mechanism for lithium storage. Further, post-treatments are employed to adjust the Ti3+ concentration and crystallinity degree in TiO2 nanomembranes, providing an opportunity to investigate the important influences of Ti3+ self-doping and amorphous structures on the electrochemical processes. With these experiments, the pseudocapacitance contributions in TiO2 nanomembranes with different crystallinity degree are quantified and verified by an in-depth kinetics analysis. Additionally, an ultrathin metallic Ti layer can be included, which further improves the lithium storage properties of the TiO2, giving rise to the state-of-the-art capacity (200 mAh g–1 at 1 C), excellent rate capability (up to 50 C), and ultralong lifetime (for 5000 cycles at 10 C, with an extraordinary retention of 100%) of TiO2 anodes.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.6b07274</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2732-7399</orcidid><orcidid>https://orcid.org/0000-0001-6327-1527</orcidid><orcidid>https://orcid.org/0000-0002-4188-6421</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2017-01, Vol.11 (1), p.821-830
issn 1936-0851
1936-086X
language eng
recordid cdi_acs_journals_10_1021_acsnano_6b07274
source ACS Publications
title Tunable Pseudocapacitance in 3D TiO2−δ Nanomembranes Enabling Superior Lithium Storage Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20Pseudocapacitance%20in%203D%20TiO2%E2%88%92%CE%B4%20Nanomembranes%20Enabling%20Superior%20Lithium%20Storage%20Performance&rft.jtitle=ACS%20nano&rft.au=Huang,%20Shaozhuan&rft.date=2017-01-24&rft.volume=11&rft.issue=1&rft.spage=821&rft.epage=830&rft.pages=821-830&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.6b07274&rft_dat=%3Cacs%3Eb945619415%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true