Alleviating Structure Collapse of Polycrystalline LiNi x Co y Mn1–x–y O2 via Surface Co Enrichment
The structure collapse issues have long restricted the application of polycrystalline LiNi x Co y Mn1–x–y O2 (NCM) at high voltages beyond 4.4 V vs Li/Li+. Herein, for LiNi0.55Co0.12Mn0.33O2 (P-NCM), rapid surface degradation is observed upon the first charge, along with serious particle fragmentati...
Gespeichert in:
Veröffentlicht in: | ACS nano 2024-07, Vol.18 (26), p.16982-16993 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16993 |
---|---|
container_issue | 26 |
container_start_page | 16982 |
container_title | ACS nano |
container_volume | 18 |
creator | Shang, Mingjie Ren, Hengyu Zhao, Wenguang Li, Zijian Fang, Jianjun Chen, Hui Fan, Wenguang Pan, Feng Zhao, Qinghe |
description | The structure collapse issues have long restricted the application of polycrystalline LiNi x Co y Mn1–x–y O2 (NCM) at high voltages beyond 4.4 V vs Li/Li+. Herein, for LiNi0.55Co0.12Mn0.33O2 (P-NCM), rapid surface degradation is observed upon the first charge, along with serious particle fragmentation upon repeated cycles. To alleviate these issues, a surface Co enrichment strategy is proposed [i.e., Co-enriched NCM (C-NCM)], which promotes the in situ formation of a robust surface rock-salt (RS) layer upon charge, serving as a highly stable interface for effective Li+ migration. Benefiting from this stabilized surface RS layer, Li+ extraction occurs mainly through this surface RS layer, rather than along the grain boundaries (GBs), thus reducing the risk of GBs’ cracking and even particle fragmentation upon cycles. Besides, O loss and TM (TM = Ni, Co, and Mn) dissolution are also effectively reduced with fewer side reactions. The C-NCM/graphite cell presents a highly reversible capacity of 205.1 mA h g–1 at 0.2 C and a high capacity retention of 86% after 500 cycles at 1 C (1 C = 200 mA g–1), which is among the best reported cell performances. This work provides a different path for alleviating particle fragmentation of NCM cathodes. |
doi_str_mv | 10.1021/acsnano.4c03128 |
format | Article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsnano_4c03128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c88549403</sourcerecordid><originalsourceid>FETCH-LOGICAL-a121t-9adec289bd0da29e28b19313068017c2af6770151742421da05825dbcc053da63</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbPXvcuqTObj90cS6hWiFaogrcw2Ww0Zd1IPqS5-R_8h_4SUwwehpnD8LwvD2OXCAsEgdekW0euXgQafBTqiM0w9iMPVPRy_H-HeMrO2nYHEEoloxkrl9aaz4q6yr3ybdf0uusbw5PaWvpoDa9L_ljbQTdD25G1lTM8rR4qvh9f-MDvHf58fe_HGfhG8BHEt31Tkj4g-Mo1lX57N647Zycl2dZcTHvOnm9WT8naSze3d8ky9QgFdl5MhdFCxXkBBYnYCJWPxdGHSAFKLaiMpAQMUQYiEFgQhEqERa41hH5BkT9nV3_c0Ua2q_vGjWkZQnZQlE2KskmR_wvtBVzs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Alleviating Structure Collapse of Polycrystalline LiNi x Co y Mn1–x–y O2 via Surface Co Enrichment</title><source>ACS Publications</source><creator>Shang, Mingjie ; Ren, Hengyu ; Zhao, Wenguang ; Li, Zijian ; Fang, Jianjun ; Chen, Hui ; Fan, Wenguang ; Pan, Feng ; Zhao, Qinghe</creator><creatorcontrib>Shang, Mingjie ; Ren, Hengyu ; Zhao, Wenguang ; Li, Zijian ; Fang, Jianjun ; Chen, Hui ; Fan, Wenguang ; Pan, Feng ; Zhao, Qinghe</creatorcontrib><description>The structure collapse issues have long restricted the application of polycrystalline LiNi x Co y Mn1–x–y O2 (NCM) at high voltages beyond 4.4 V vs Li/Li+. Herein, for LiNi0.55Co0.12Mn0.33O2 (P-NCM), rapid surface degradation is observed upon the first charge, along with serious particle fragmentation upon repeated cycles. To alleviate these issues, a surface Co enrichment strategy is proposed [i.e., Co-enriched NCM (C-NCM)], which promotes the in situ formation of a robust surface rock-salt (RS) layer upon charge, serving as a highly stable interface for effective Li+ migration. Benefiting from this stabilized surface RS layer, Li+ extraction occurs mainly through this surface RS layer, rather than along the grain boundaries (GBs), thus reducing the risk of GBs’ cracking and even particle fragmentation upon cycles. Besides, O loss and TM (TM = Ni, Co, and Mn) dissolution are also effectively reduced with fewer side reactions. The C-NCM/graphite cell presents a highly reversible capacity of 205.1 mA h g–1 at 0.2 C and a high capacity retention of 86% after 500 cycles at 1 C (1 C = 200 mA g–1), which is among the best reported cell performances. This work provides a different path for alleviating particle fragmentation of NCM cathodes.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c03128</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2024-07, Vol.18 (26), p.16982-16993</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8216-1339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.4c03128$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.4c03128$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Shang, Mingjie</creatorcontrib><creatorcontrib>Ren, Hengyu</creatorcontrib><creatorcontrib>Zhao, Wenguang</creatorcontrib><creatorcontrib>Li, Zijian</creatorcontrib><creatorcontrib>Fang, Jianjun</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Fan, Wenguang</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Zhao, Qinghe</creatorcontrib><title>Alleviating Structure Collapse of Polycrystalline LiNi x Co y Mn1–x–y O2 via Surface Co Enrichment</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The structure collapse issues have long restricted the application of polycrystalline LiNi x Co y Mn1–x–y O2 (NCM) at high voltages beyond 4.4 V vs Li/Li+. Herein, for LiNi0.55Co0.12Mn0.33O2 (P-NCM), rapid surface degradation is observed upon the first charge, along with serious particle fragmentation upon repeated cycles. To alleviate these issues, a surface Co enrichment strategy is proposed [i.e., Co-enriched NCM (C-NCM)], which promotes the in situ formation of a robust surface rock-salt (RS) layer upon charge, serving as a highly stable interface for effective Li+ migration. Benefiting from this stabilized surface RS layer, Li+ extraction occurs mainly through this surface RS layer, rather than along the grain boundaries (GBs), thus reducing the risk of GBs’ cracking and even particle fragmentation upon cycles. Besides, O loss and TM (TM = Ni, Co, and Mn) dissolution are also effectively reduced with fewer side reactions. The C-NCM/graphite cell presents a highly reversible capacity of 205.1 mA h g–1 at 0.2 C and a high capacity retention of 86% after 500 cycles at 1 C (1 C = 200 mA g–1), which is among the best reported cell performances. This work provides a different path for alleviating particle fragmentation of NCM cathodes.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kE1Lw0AQhhdRsFbPXvcuqTObj90cS6hWiFaogrcw2Ww0Zd1IPqS5-R_8h_4SUwwehpnD8LwvD2OXCAsEgdekW0euXgQafBTqiM0w9iMPVPRy_H-HeMrO2nYHEEoloxkrl9aaz4q6yr3ybdf0uusbw5PaWvpoDa9L_ljbQTdD25G1lTM8rR4qvh9f-MDvHf58fe_HGfhG8BHEt31Tkj4g-Mo1lX57N647Zycl2dZcTHvOnm9WT8naSze3d8ky9QgFdl5MhdFCxXkBBYnYCJWPxdGHSAFKLaiMpAQMUQYiEFgQhEqERa41hH5BkT9nV3_c0Ua2q_vGjWkZQnZQlE2KskmR_wvtBVzs</recordid><startdate>20240702</startdate><enddate>20240702</enddate><creator>Shang, Mingjie</creator><creator>Ren, Hengyu</creator><creator>Zhao, Wenguang</creator><creator>Li, Zijian</creator><creator>Fang, Jianjun</creator><creator>Chen, Hui</creator><creator>Fan, Wenguang</creator><creator>Pan, Feng</creator><creator>Zhao, Qinghe</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-8216-1339</orcidid></search><sort><creationdate>20240702</creationdate><title>Alleviating Structure Collapse of Polycrystalline LiNi x Co y Mn1–x–y O2 via Surface Co Enrichment</title><author>Shang, Mingjie ; Ren, Hengyu ; Zhao, Wenguang ; Li, Zijian ; Fang, Jianjun ; Chen, Hui ; Fan, Wenguang ; Pan, Feng ; Zhao, Qinghe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a121t-9adec289bd0da29e28b19313068017c2af6770151742421da05825dbcc053da63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Mingjie</creatorcontrib><creatorcontrib>Ren, Hengyu</creatorcontrib><creatorcontrib>Zhao, Wenguang</creatorcontrib><creatorcontrib>Li, Zijian</creatorcontrib><creatorcontrib>Fang, Jianjun</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Fan, Wenguang</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Zhao, Qinghe</creatorcontrib><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Mingjie</au><au>Ren, Hengyu</au><au>Zhao, Wenguang</au><au>Li, Zijian</au><au>Fang, Jianjun</au><au>Chen, Hui</au><au>Fan, Wenguang</au><au>Pan, Feng</au><au>Zhao, Qinghe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alleviating Structure Collapse of Polycrystalline LiNi x Co y Mn1–x–y O2 via Surface Co Enrichment</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-07-02</date><risdate>2024</risdate><volume>18</volume><issue>26</issue><spage>16982</spage><epage>16993</epage><pages>16982-16993</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The structure collapse issues have long restricted the application of polycrystalline LiNi x Co y Mn1–x–y O2 (NCM) at high voltages beyond 4.4 V vs Li/Li+. Herein, for LiNi0.55Co0.12Mn0.33O2 (P-NCM), rapid surface degradation is observed upon the first charge, along with serious particle fragmentation upon repeated cycles. To alleviate these issues, a surface Co enrichment strategy is proposed [i.e., Co-enriched NCM (C-NCM)], which promotes the in situ formation of a robust surface rock-salt (RS) layer upon charge, serving as a highly stable interface for effective Li+ migration. Benefiting from this stabilized surface RS layer, Li+ extraction occurs mainly through this surface RS layer, rather than along the grain boundaries (GBs), thus reducing the risk of GBs’ cracking and even particle fragmentation upon cycles. Besides, O loss and TM (TM = Ni, Co, and Mn) dissolution are also effectively reduced with fewer side reactions. The C-NCM/graphite cell presents a highly reversible capacity of 205.1 mA h g–1 at 0.2 C and a high capacity retention of 86% after 500 cycles at 1 C (1 C = 200 mA g–1), which is among the best reported cell performances. This work provides a different path for alleviating particle fragmentation of NCM cathodes.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.4c03128</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8216-1339</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2024-07, Vol.18 (26), p.16982-16993 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_acs_journals_10_1021_acsnano_4c03128 |
source | ACS Publications |
title | Alleviating Structure Collapse of Polycrystalline LiNi x Co y Mn1–x–y O2 via Surface Co Enrichment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alleviating%20Structure%20Collapse%20of%20Polycrystalline%20LiNi%20x%20Co%20y%20Mn1%E2%80%93x%E2%80%93y%20O2%20via%20Surface%20Co%20Enrichment&rft.jtitle=ACS%20nano&rft.au=Shang,%20Mingjie&rft.date=2024-07-02&rft.volume=18&rft.issue=26&rft.spage=16982&rft.epage=16993&rft.pages=16982-16993&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c03128&rft_dat=%3Cacs%3Ec88549403%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |