Alleviating Structure Collapse of Polycrystalline LiNi x Co y Mn1–x–y O2 via Surface Co Enrichment

The structure collapse issues have long restricted the application of polycrystalline LiNi x Co y Mn1–x–y O2 (NCM) at high voltages beyond 4.4 V vs Li/Li+. Herein, for LiNi0.55Co0.12Mn0.33O2 (P-NCM), rapid surface degradation is observed upon the first charge, along with serious particle fragmentati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2024-07, Vol.18 (26), p.16982-16993
Hauptverfasser: Shang, Mingjie, Ren, Hengyu, Zhao, Wenguang, Li, Zijian, Fang, Jianjun, Chen, Hui, Fan, Wenguang, Pan, Feng, Zhao, Qinghe
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16993
container_issue 26
container_start_page 16982
container_title ACS nano
container_volume 18
creator Shang, Mingjie
Ren, Hengyu
Zhao, Wenguang
Li, Zijian
Fang, Jianjun
Chen, Hui
Fan, Wenguang
Pan, Feng
Zhao, Qinghe
description The structure collapse issues have long restricted the application of polycrystalline LiNi x Co y Mn1–x–y O2 (NCM) at high voltages beyond 4.4 V vs Li/Li+. Herein, for LiNi0.55Co0.12Mn0.33O2 (P-NCM), rapid surface degradation is observed upon the first charge, along with serious particle fragmentation upon repeated cycles. To alleviate these issues, a surface Co enrichment strategy is proposed [i.e., Co-enriched NCM (C-NCM)], which promotes the in situ formation of a robust surface rock-salt (RS) layer upon charge, serving as a highly stable interface for effective Li+ migration. Benefiting from this stabilized surface RS layer, Li+ extraction occurs mainly through this surface RS layer, rather than along the grain boundaries (GBs), thus reducing the risk of GBs’ cracking and even particle fragmentation upon cycles. Besides, O loss and TM (TM = Ni, Co, and Mn) dissolution are also effectively reduced with fewer side reactions. The C-NCM/graphite cell presents a highly reversible capacity of 205.1 mA h g–1 at 0.2 C and a high capacity retention of 86% after 500 cycles at 1 C (1 C = 200 mA g–1), which is among the best reported cell performances. This work provides a different path for alleviating particle fragmentation of NCM cathodes.
doi_str_mv 10.1021/acsnano.4c03128
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsnano_4c03128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c88549403</sourcerecordid><originalsourceid>FETCH-LOGICAL-a121t-9adec289bd0da29e28b19313068017c2af6770151742421da05825dbcc053da63</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbPXvcuqTObj90cS6hWiFaogrcw2Ww0Zd1IPqS5-R_8h_4SUwwehpnD8LwvD2OXCAsEgdekW0euXgQafBTqiM0w9iMPVPRy_H-HeMrO2nYHEEoloxkrl9aaz4q6yr3ybdf0uusbw5PaWvpoDa9L_ljbQTdD25G1lTM8rR4qvh9f-MDvHf58fe_HGfhG8BHEt31Tkj4g-Mo1lX57N647Zycl2dZcTHvOnm9WT8naSze3d8ky9QgFdl5MhdFCxXkBBYnYCJWPxdGHSAFKLaiMpAQMUQYiEFgQhEqERa41hH5BkT9nV3_c0Ua2q_vGjWkZQnZQlE2KskmR_wvtBVzs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Alleviating Structure Collapse of Polycrystalline LiNi x Co y Mn1–x–y O2 via Surface Co Enrichment</title><source>ACS Publications</source><creator>Shang, Mingjie ; Ren, Hengyu ; Zhao, Wenguang ; Li, Zijian ; Fang, Jianjun ; Chen, Hui ; Fan, Wenguang ; Pan, Feng ; Zhao, Qinghe</creator><creatorcontrib>Shang, Mingjie ; Ren, Hengyu ; Zhao, Wenguang ; Li, Zijian ; Fang, Jianjun ; Chen, Hui ; Fan, Wenguang ; Pan, Feng ; Zhao, Qinghe</creatorcontrib><description>The structure collapse issues have long restricted the application of polycrystalline LiNi x Co y Mn1–x–y O2 (NCM) at high voltages beyond 4.4 V vs Li/Li+. Herein, for LiNi0.55Co0.12Mn0.33O2 (P-NCM), rapid surface degradation is observed upon the first charge, along with serious particle fragmentation upon repeated cycles. To alleviate these issues, a surface Co enrichment strategy is proposed [i.e., Co-enriched NCM (C-NCM)], which promotes the in situ formation of a robust surface rock-salt (RS) layer upon charge, serving as a highly stable interface for effective Li+ migration. Benefiting from this stabilized surface RS layer, Li+ extraction occurs mainly through this surface RS layer, rather than along the grain boundaries (GBs), thus reducing the risk of GBs’ cracking and even particle fragmentation upon cycles. Besides, O loss and TM (TM = Ni, Co, and Mn) dissolution are also effectively reduced with fewer side reactions. The C-NCM/graphite cell presents a highly reversible capacity of 205.1 mA h g–1 at 0.2 C and a high capacity retention of 86% after 500 cycles at 1 C (1 C = 200 mA g–1), which is among the best reported cell performances. This work provides a different path for alleviating particle fragmentation of NCM cathodes.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.4c03128</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2024-07, Vol.18 (26), p.16982-16993</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8216-1339</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.4c03128$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.4c03128$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Shang, Mingjie</creatorcontrib><creatorcontrib>Ren, Hengyu</creatorcontrib><creatorcontrib>Zhao, Wenguang</creatorcontrib><creatorcontrib>Li, Zijian</creatorcontrib><creatorcontrib>Fang, Jianjun</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Fan, Wenguang</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Zhao, Qinghe</creatorcontrib><title>Alleviating Structure Collapse of Polycrystalline LiNi x Co y Mn1–x–y O2 via Surface Co Enrichment</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The structure collapse issues have long restricted the application of polycrystalline LiNi x Co y Mn1–x–y O2 (NCM) at high voltages beyond 4.4 V vs Li/Li+. Herein, for LiNi0.55Co0.12Mn0.33O2 (P-NCM), rapid surface degradation is observed upon the first charge, along with serious particle fragmentation upon repeated cycles. To alleviate these issues, a surface Co enrichment strategy is proposed [i.e., Co-enriched NCM (C-NCM)], which promotes the in situ formation of a robust surface rock-salt (RS) layer upon charge, serving as a highly stable interface for effective Li+ migration. Benefiting from this stabilized surface RS layer, Li+ extraction occurs mainly through this surface RS layer, rather than along the grain boundaries (GBs), thus reducing the risk of GBs’ cracking and even particle fragmentation upon cycles. Besides, O loss and TM (TM = Ni, Co, and Mn) dissolution are also effectively reduced with fewer side reactions. The C-NCM/graphite cell presents a highly reversible capacity of 205.1 mA h g–1 at 0.2 C and a high capacity retention of 86% after 500 cycles at 1 C (1 C = 200 mA g–1), which is among the best reported cell performances. This work provides a different path for alleviating particle fragmentation of NCM cathodes.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kE1Lw0AQhhdRsFbPXvcuqTObj90cS6hWiFaogrcw2Ww0Zd1IPqS5-R_8h_4SUwwehpnD8LwvD2OXCAsEgdekW0euXgQafBTqiM0w9iMPVPRy_H-HeMrO2nYHEEoloxkrl9aaz4q6yr3ybdf0uusbw5PaWvpoDa9L_ljbQTdD25G1lTM8rR4qvh9f-MDvHf58fe_HGfhG8BHEt31Tkj4g-Mo1lX57N647Zycl2dZcTHvOnm9WT8naSze3d8ky9QgFdl5MhdFCxXkBBYnYCJWPxdGHSAFKLaiMpAQMUQYiEFgQhEqERa41hH5BkT9nV3_c0Ua2q_vGjWkZQnZQlE2KskmR_wvtBVzs</recordid><startdate>20240702</startdate><enddate>20240702</enddate><creator>Shang, Mingjie</creator><creator>Ren, Hengyu</creator><creator>Zhao, Wenguang</creator><creator>Li, Zijian</creator><creator>Fang, Jianjun</creator><creator>Chen, Hui</creator><creator>Fan, Wenguang</creator><creator>Pan, Feng</creator><creator>Zhao, Qinghe</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-8216-1339</orcidid></search><sort><creationdate>20240702</creationdate><title>Alleviating Structure Collapse of Polycrystalline LiNi x Co y Mn1–x–y O2 via Surface Co Enrichment</title><author>Shang, Mingjie ; Ren, Hengyu ; Zhao, Wenguang ; Li, Zijian ; Fang, Jianjun ; Chen, Hui ; Fan, Wenguang ; Pan, Feng ; Zhao, Qinghe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a121t-9adec289bd0da29e28b19313068017c2af6770151742421da05825dbcc053da63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Mingjie</creatorcontrib><creatorcontrib>Ren, Hengyu</creatorcontrib><creatorcontrib>Zhao, Wenguang</creatorcontrib><creatorcontrib>Li, Zijian</creatorcontrib><creatorcontrib>Fang, Jianjun</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Fan, Wenguang</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><creatorcontrib>Zhao, Qinghe</creatorcontrib><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Mingjie</au><au>Ren, Hengyu</au><au>Zhao, Wenguang</au><au>Li, Zijian</au><au>Fang, Jianjun</au><au>Chen, Hui</au><au>Fan, Wenguang</au><au>Pan, Feng</au><au>Zhao, Qinghe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alleviating Structure Collapse of Polycrystalline LiNi x Co y Mn1–x–y O2 via Surface Co Enrichment</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2024-07-02</date><risdate>2024</risdate><volume>18</volume><issue>26</issue><spage>16982</spage><epage>16993</epage><pages>16982-16993</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The structure collapse issues have long restricted the application of polycrystalline LiNi x Co y Mn1–x–y O2 (NCM) at high voltages beyond 4.4 V vs Li/Li+. Herein, for LiNi0.55Co0.12Mn0.33O2 (P-NCM), rapid surface degradation is observed upon the first charge, along with serious particle fragmentation upon repeated cycles. To alleviate these issues, a surface Co enrichment strategy is proposed [i.e., Co-enriched NCM (C-NCM)], which promotes the in situ formation of a robust surface rock-salt (RS) layer upon charge, serving as a highly stable interface for effective Li+ migration. Benefiting from this stabilized surface RS layer, Li+ extraction occurs mainly through this surface RS layer, rather than along the grain boundaries (GBs), thus reducing the risk of GBs’ cracking and even particle fragmentation upon cycles. Besides, O loss and TM (TM = Ni, Co, and Mn) dissolution are also effectively reduced with fewer side reactions. The C-NCM/graphite cell presents a highly reversible capacity of 205.1 mA h g–1 at 0.2 C and a high capacity retention of 86% after 500 cycles at 1 C (1 C = 200 mA g–1), which is among the best reported cell performances. This work provides a different path for alleviating particle fragmentation of NCM cathodes.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.4c03128</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8216-1339</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2024-07, Vol.18 (26), p.16982-16993
issn 1936-0851
1936-086X
language eng
recordid cdi_acs_journals_10_1021_acsnano_4c03128
source ACS Publications
title Alleviating Structure Collapse of Polycrystalline LiNi x Co y Mn1–x–y O2 via Surface Co Enrichment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alleviating%20Structure%20Collapse%20of%20Polycrystalline%20LiNi%20x%20Co%20y%20Mn1%E2%80%93x%E2%80%93y%20O2%20via%20Surface%20Co%20Enrichment&rft.jtitle=ACS%20nano&rft.au=Shang,%20Mingjie&rft.date=2024-07-02&rft.volume=18&rft.issue=26&rft.spage=16982&rft.epage=16993&rft.pages=16982-16993&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.4c03128&rft_dat=%3Cacs%3Ec88549403%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true