V2+/V3+ Redox Kinetics on Glassy Carbon in Acidic Electrolytes for Vanadium Redox Flow Batteries
Vanadium redox flow batteries are a promising technology for energy storage, yet the mechanism of the kinetically limiting V2+/V3+ redox reaction remains poorly understood. Here, we elucidate the impact of anion complexation on V2+/V3+ kinetics on a glassy carbon electrode in three common electrolyt...
Gespeichert in:
Veröffentlicht in: | ACS energy letters 2019-10, Vol.4 (10), p.2368-2377 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2377 |
---|---|
container_issue | 10 |
container_start_page | 2368 |
container_title | ACS energy letters |
container_volume | 4 |
creator | Agarwal, Harsh Florian, Jacob Goldsmith, Bryan R Singh, Nirala |
description | Vanadium redox flow batteries are a promising technology for energy storage, yet the mechanism of the kinetically limiting V2+/V3+ redox reaction remains poorly understood. Here, we elucidate the impact of anion complexation on V2+/V3+ kinetics on a glassy carbon electrode in three common electrolytes: hydrochloric acid, sulfuric acid, and mixed HCl/H2SO4. The V2+/V3+ kinetics are ∼2.5 times faster in HCl and have lower apparent activation energies than those in H2SO4 or HCl/H2SO4. We also identify the presence of [V(H2O)4Cl2]+ species in HCl by UV–vis spectroscopy. We confirm that the V2+/V3+ reaction proceeds via an adsorbed intermediate and propose a bridging mechanism through adsorbed *Cl (in HCl) and *OH (in H2SO4 or HCl/H2SO4). A bridging mechanism through *Cl is supported by even faster redox kinetics in HBr than in HCl, possibly due to the higher polarizability of *Br. By measuring the exchange current densities using steady-state current measurements and impedance spectroscopy, we show that the overall reaction is a two-electron process in HCl as opposed to a one-electron process in H2SO4 and HCl/H2SO4. |
doi_str_mv | 10.1021/acsenergylett.9b01423 |
format | Article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsenergylett_9b01423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b336706452</sourcerecordid><originalsourceid>FETCH-LOGICAL-a127t-dc1ec2f8c2199eeccaa2c870799ecaf95a05ca42f3205b8064233a09c61024c23</originalsourceid><addsrcrecordid>eNpVkEFLw0AQhRdRsNT-BGHvJe3sbpImx1raKhYE0VzjZDKRLTGB7BbNv3fFHpQ5vHmX93ifELcKFgq0WiI57nh4H1v2fpFXoGJtLsREmwyiTOXJ5Z__WsycOwKASrMk3ES8FXq-LMxcPnPdf8lH27G35GTfyX2Lzo1yg0MVnO3kmmxtSW5bJj_07ejZyaYfZIEd1vb0cc7Ytf2nvEPvebDsbsRVg63j2Vmn4nW3fdncR4en_cNmfYhQ6ZWPalJMuslIqzxnJkLUlK1gFRxhkycICWGsG6MhqTJIw0qDkFMaKMSkzVSo39wApDz2p6ELbaWC8odS-Y9SeaZkvgGlZl7R</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>V2+/V3+ Redox Kinetics on Glassy Carbon in Acidic Electrolytes for Vanadium Redox Flow Batteries</title><source>American Chemical Society Journals</source><creator>Agarwal, Harsh ; Florian, Jacob ; Goldsmith, Bryan R ; Singh, Nirala</creator><creatorcontrib>Agarwal, Harsh ; Florian, Jacob ; Goldsmith, Bryan R ; Singh, Nirala</creatorcontrib><description>Vanadium redox flow batteries are a promising technology for energy storage, yet the mechanism of the kinetically limiting V2+/V3+ redox reaction remains poorly understood. Here, we elucidate the impact of anion complexation on V2+/V3+ kinetics on a glassy carbon electrode in three common electrolytes: hydrochloric acid, sulfuric acid, and mixed HCl/H2SO4. The V2+/V3+ kinetics are ∼2.5 times faster in HCl and have lower apparent activation energies than those in H2SO4 or HCl/H2SO4. We also identify the presence of [V(H2O)4Cl2]+ species in HCl by UV–vis spectroscopy. We confirm that the V2+/V3+ reaction proceeds via an adsorbed intermediate and propose a bridging mechanism through adsorbed *Cl (in HCl) and *OH (in H2SO4 or HCl/H2SO4). A bridging mechanism through *Cl is supported by even faster redox kinetics in HBr than in HCl, possibly due to the higher polarizability of *Br. By measuring the exchange current densities using steady-state current measurements and impedance spectroscopy, we show that the overall reaction is a two-electron process in HCl as opposed to a one-electron process in H2SO4 and HCl/H2SO4.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.9b01423</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS energy letters, 2019-10, Vol.4 (10), p.2368-2377</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1264-8018 ; 0000-0003-0389-3927 ; 0000-0002-5237-4819 ; 0000-0003-1895-8463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsenergylett.9b01423$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsenergylett.9b01423$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Agarwal, Harsh</creatorcontrib><creatorcontrib>Florian, Jacob</creatorcontrib><creatorcontrib>Goldsmith, Bryan R</creatorcontrib><creatorcontrib>Singh, Nirala</creatorcontrib><title>V2+/V3+ Redox Kinetics on Glassy Carbon in Acidic Electrolytes for Vanadium Redox Flow Batteries</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>Vanadium redox flow batteries are a promising technology for energy storage, yet the mechanism of the kinetically limiting V2+/V3+ redox reaction remains poorly understood. Here, we elucidate the impact of anion complexation on V2+/V3+ kinetics on a glassy carbon electrode in three common electrolytes: hydrochloric acid, sulfuric acid, and mixed HCl/H2SO4. The V2+/V3+ kinetics are ∼2.5 times faster in HCl and have lower apparent activation energies than those in H2SO4 or HCl/H2SO4. We also identify the presence of [V(H2O)4Cl2]+ species in HCl by UV–vis spectroscopy. We confirm that the V2+/V3+ reaction proceeds via an adsorbed intermediate and propose a bridging mechanism through adsorbed *Cl (in HCl) and *OH (in H2SO4 or HCl/H2SO4). A bridging mechanism through *Cl is supported by even faster redox kinetics in HBr than in HCl, possibly due to the higher polarizability of *Br. By measuring the exchange current densities using steady-state current measurements and impedance spectroscopy, we show that the overall reaction is a two-electron process in HCl as opposed to a one-electron process in H2SO4 and HCl/H2SO4.</description><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpVkEFLw0AQhRdRsNT-BGHvJe3sbpImx1raKhYE0VzjZDKRLTGB7BbNv3fFHpQ5vHmX93ifELcKFgq0WiI57nh4H1v2fpFXoGJtLsREmwyiTOXJ5Z__WsycOwKASrMk3ES8FXq-LMxcPnPdf8lH27G35GTfyX2Lzo1yg0MVnO3kmmxtSW5bJj_07ejZyaYfZIEd1vb0cc7Ytf2nvEPvebDsbsRVg63j2Vmn4nW3fdncR4en_cNmfYhQ6ZWPalJMuslIqzxnJkLUlK1gFRxhkycICWGsG6MhqTJIw0qDkFMaKMSkzVSo39wApDz2p6ELbaWC8odS-Y9SeaZkvgGlZl7R</recordid><startdate>20191011</startdate><enddate>20191011</enddate><creator>Agarwal, Harsh</creator><creator>Florian, Jacob</creator><creator>Goldsmith, Bryan R</creator><creator>Singh, Nirala</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-1264-8018</orcidid><orcidid>https://orcid.org/0000-0003-0389-3927</orcidid><orcidid>https://orcid.org/0000-0002-5237-4819</orcidid><orcidid>https://orcid.org/0000-0003-1895-8463</orcidid></search><sort><creationdate>20191011</creationdate><title>V2+/V3+ Redox Kinetics on Glassy Carbon in Acidic Electrolytes for Vanadium Redox Flow Batteries</title><author>Agarwal, Harsh ; Florian, Jacob ; Goldsmith, Bryan R ; Singh, Nirala</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a127t-dc1ec2f8c2199eeccaa2c870799ecaf95a05ca42f3205b8064233a09c61024c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Agarwal, Harsh</creatorcontrib><creatorcontrib>Florian, Jacob</creatorcontrib><creatorcontrib>Goldsmith, Bryan R</creatorcontrib><creatorcontrib>Singh, Nirala</creatorcontrib><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agarwal, Harsh</au><au>Florian, Jacob</au><au>Goldsmith, Bryan R</au><au>Singh, Nirala</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>V2+/V3+ Redox Kinetics on Glassy Carbon in Acidic Electrolytes for Vanadium Redox Flow Batteries</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2019-10-11</date><risdate>2019</risdate><volume>4</volume><issue>10</issue><spage>2368</spage><epage>2377</epage><pages>2368-2377</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>Vanadium redox flow batteries are a promising technology for energy storage, yet the mechanism of the kinetically limiting V2+/V3+ redox reaction remains poorly understood. Here, we elucidate the impact of anion complexation on V2+/V3+ kinetics on a glassy carbon electrode in three common electrolytes: hydrochloric acid, sulfuric acid, and mixed HCl/H2SO4. The V2+/V3+ kinetics are ∼2.5 times faster in HCl and have lower apparent activation energies than those in H2SO4 or HCl/H2SO4. We also identify the presence of [V(H2O)4Cl2]+ species in HCl by UV–vis spectroscopy. We confirm that the V2+/V3+ reaction proceeds via an adsorbed intermediate and propose a bridging mechanism through adsorbed *Cl (in HCl) and *OH (in H2SO4 or HCl/H2SO4). A bridging mechanism through *Cl is supported by even faster redox kinetics in HBr than in HCl, possibly due to the higher polarizability of *Br. By measuring the exchange current densities using steady-state current measurements and impedance spectroscopy, we show that the overall reaction is a two-electron process in HCl as opposed to a one-electron process in H2SO4 and HCl/H2SO4.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.9b01423</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1264-8018</orcidid><orcidid>https://orcid.org/0000-0003-0389-3927</orcidid><orcidid>https://orcid.org/0000-0002-5237-4819</orcidid><orcidid>https://orcid.org/0000-0003-1895-8463</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2380-8195 |
ispartof | ACS energy letters, 2019-10, Vol.4 (10), p.2368-2377 |
issn | 2380-8195 2380-8195 |
language | eng |
recordid | cdi_acs_journals_10_1021_acsenergylett_9b01423 |
source | American Chemical Society Journals |
title | V2+/V3+ Redox Kinetics on Glassy Carbon in Acidic Electrolytes for Vanadium Redox Flow Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=V2+/V3+%20Redox%20Kinetics%20on%20Glassy%20Carbon%20in%20Acidic%20Electrolytes%20for%20Vanadium%20Redox%20Flow%20Batteries&rft.jtitle=ACS%20energy%20letters&rft.au=Agarwal,%20Harsh&rft.date=2019-10-11&rft.volume=4&rft.issue=10&rft.spage=2368&rft.epage=2377&rft.pages=2368-2377&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.9b01423&rft_dat=%3Cacs%3Eb336706452%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |