High-Performance Electrochemical CO2 Reduction Cells Based on Non-noble Metal Catalysts
The promise and challenge of electrochemical mitigation of CO2 calls for innovations on both catalyst and reactor levels. In this work, enabled by our high-performance and earth-abundant CO2 electroreduction catalyst materials, we developed alkaline microflow electrolytic cells for energy-efficient,...
Gespeichert in:
Veröffentlicht in: | ACS energy letters 2018-10, Vol.3 (10), p.2527-2532 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2532 |
---|---|
container_issue | 10 |
container_start_page | 2527 |
container_title | ACS energy letters |
container_volume | 3 |
creator | Lu, Xu Wu, Yueshen Yuan, Xiaolei Huang, Ling Wu, Zishan Xuan, Jin Wang, Yifei Wang, Hailiang |
description | The promise and challenge of electrochemical mitigation of CO2 calls for innovations on both catalyst and reactor levels. In this work, enabled by our high-performance and earth-abundant CO2 electroreduction catalyst materials, we developed alkaline microflow electrolytic cells for energy-efficient, selective, fast, and durable CO2 conversion to CO and HCOO–. With a cobalt phthalocyanine-based cathode catalyst, the CO-selective cell starts to operate at a 0.26 V overpotential and reaches a Faradaic efficiency of 94% and a partial current density of 31 mA/cm2 at a 0.56 V overpotential. With a SnO2-based cathode catalyst, the HCOO–-selective cell starts to operate at a 0.76 V overpotential and reaches a Faradaic efficiency of 82% and a partial current density of 113 mA/cm2 at a 1.36 V overpotential. In contrast to previous studies, we found that the overpotential reduction from using the alkaline electrolyte is mostly contributed by a pH gradient near the cathode surface. |
doi_str_mv | 10.1021/acsenergylett.8b01681 |
format | Article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsenergylett_8b01681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b574592765</sourcerecordid><originalsourceid>FETCH-LOGICAL-a310t-d9d4289b679439a524c660d379d5f862220bd470551e5a013e1af08b35799c0d3</originalsourceid><addsrcrecordid>eNpVkG9LwzAQh4MoOOY-gpAvkHlJmjZ5qWW6wXQiii9Lmlz3h6yFJnuxb2-Le6Ec3P0OHu7gIeSew5yD4A_WRWyx354DpjTXNfBc8ysyEVID09yo6z_5lsxiPACMkBpqQr6X--2OvWPfdP3Rtg7pIqBLfed2eNw7G2i5EfQD_cmlfdfSEkOI9MlG9HRY37qWtV0dkL5iGmE79HNM8Y7cNDZEnF3mlHw9Lz7LJVtvXlbl45pZySExb3wmtKnzwmTSWCUyl-fgZWG8anQuhIDaZwUoxVFZ4BK5bUDXUhXGuAGcEv57d_BQHbpT3w7fKg7VKKf6J6e6yJE_QotbLw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Performance Electrochemical CO2 Reduction Cells Based on Non-noble Metal Catalysts</title><source>ACS Publications</source><creator>Lu, Xu ; Wu, Yueshen ; Yuan, Xiaolei ; Huang, Ling ; Wu, Zishan ; Xuan, Jin ; Wang, Yifei ; Wang, Hailiang</creator><creatorcontrib>Lu, Xu ; Wu, Yueshen ; Yuan, Xiaolei ; Huang, Ling ; Wu, Zishan ; Xuan, Jin ; Wang, Yifei ; Wang, Hailiang</creatorcontrib><description>The promise and challenge of electrochemical mitigation of CO2 calls for innovations on both catalyst and reactor levels. In this work, enabled by our high-performance and earth-abundant CO2 electroreduction catalyst materials, we developed alkaline microflow electrolytic cells for energy-efficient, selective, fast, and durable CO2 conversion to CO and HCOO–. With a cobalt phthalocyanine-based cathode catalyst, the CO-selective cell starts to operate at a 0.26 V overpotential and reaches a Faradaic efficiency of 94% and a partial current density of 31 mA/cm2 at a 0.56 V overpotential. With a SnO2-based cathode catalyst, the HCOO–-selective cell starts to operate at a 0.76 V overpotential and reaches a Faradaic efficiency of 82% and a partial current density of 113 mA/cm2 at a 1.36 V overpotential. In contrast to previous studies, we found that the overpotential reduction from using the alkaline electrolyte is mostly contributed by a pH gradient near the cathode surface.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.8b01681</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS energy letters, 2018-10, Vol.3 (10), p.2527-2532</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4810-9112 ; 0000-0003-4409-2034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsenergylett.8b01681$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsenergylett.8b01681$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Lu, Xu</creatorcontrib><creatorcontrib>Wu, Yueshen</creatorcontrib><creatorcontrib>Yuan, Xiaolei</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Wu, Zishan</creatorcontrib><creatorcontrib>Xuan, Jin</creatorcontrib><creatorcontrib>Wang, Yifei</creatorcontrib><creatorcontrib>Wang, Hailiang</creatorcontrib><title>High-Performance Electrochemical CO2 Reduction Cells Based on Non-noble Metal Catalysts</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>The promise and challenge of electrochemical mitigation of CO2 calls for innovations on both catalyst and reactor levels. In this work, enabled by our high-performance and earth-abundant CO2 electroreduction catalyst materials, we developed alkaline microflow electrolytic cells for energy-efficient, selective, fast, and durable CO2 conversion to CO and HCOO–. With a cobalt phthalocyanine-based cathode catalyst, the CO-selective cell starts to operate at a 0.26 V overpotential and reaches a Faradaic efficiency of 94% and a partial current density of 31 mA/cm2 at a 0.56 V overpotential. With a SnO2-based cathode catalyst, the HCOO–-selective cell starts to operate at a 0.76 V overpotential and reaches a Faradaic efficiency of 82% and a partial current density of 113 mA/cm2 at a 1.36 V overpotential. In contrast to previous studies, we found that the overpotential reduction from using the alkaline electrolyte is mostly contributed by a pH gradient near the cathode surface.</description><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpVkG9LwzAQh4MoOOY-gpAvkHlJmjZ5qWW6wXQiii9Lmlz3h6yFJnuxb2-Le6Ec3P0OHu7gIeSew5yD4A_WRWyx354DpjTXNfBc8ysyEVID09yo6z_5lsxiPACMkBpqQr6X--2OvWPfdP3Rtg7pIqBLfed2eNw7G2i5EfQD_cmlfdfSEkOI9MlG9HRY37qWtV0dkL5iGmE79HNM8Y7cNDZEnF3mlHw9Lz7LJVtvXlbl45pZySExb3wmtKnzwmTSWCUyl-fgZWG8anQuhIDaZwUoxVFZ4BK5bUDXUhXGuAGcEv57d_BQHbpT3w7fKg7VKKf6J6e6yJE_QotbLw</recordid><startdate>20181012</startdate><enddate>20181012</enddate><creator>Lu, Xu</creator><creator>Wu, Yueshen</creator><creator>Yuan, Xiaolei</creator><creator>Huang, Ling</creator><creator>Wu, Zishan</creator><creator>Xuan, Jin</creator><creator>Wang, Yifei</creator><creator>Wang, Hailiang</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-4810-9112</orcidid><orcidid>https://orcid.org/0000-0003-4409-2034</orcidid></search><sort><creationdate>20181012</creationdate><title>High-Performance Electrochemical CO2 Reduction Cells Based on Non-noble Metal Catalysts</title><author>Lu, Xu ; Wu, Yueshen ; Yuan, Xiaolei ; Huang, Ling ; Wu, Zishan ; Xuan, Jin ; Wang, Yifei ; Wang, Hailiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a310t-d9d4289b679439a524c660d379d5f862220bd470551e5a013e1af08b35799c0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xu</creatorcontrib><creatorcontrib>Wu, Yueshen</creatorcontrib><creatorcontrib>Yuan, Xiaolei</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Wu, Zishan</creatorcontrib><creatorcontrib>Xuan, Jin</creatorcontrib><creatorcontrib>Wang, Yifei</creatorcontrib><creatorcontrib>Wang, Hailiang</creatorcontrib><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xu</au><au>Wu, Yueshen</au><au>Yuan, Xiaolei</au><au>Huang, Ling</au><au>Wu, Zishan</au><au>Xuan, Jin</au><au>Wang, Yifei</au><au>Wang, Hailiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Electrochemical CO2 Reduction Cells Based on Non-noble Metal Catalysts</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2018-10-12</date><risdate>2018</risdate><volume>3</volume><issue>10</issue><spage>2527</spage><epage>2532</epage><pages>2527-2532</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>The promise and challenge of electrochemical mitigation of CO2 calls for innovations on both catalyst and reactor levels. In this work, enabled by our high-performance and earth-abundant CO2 electroreduction catalyst materials, we developed alkaline microflow electrolytic cells for energy-efficient, selective, fast, and durable CO2 conversion to CO and HCOO–. With a cobalt phthalocyanine-based cathode catalyst, the CO-selective cell starts to operate at a 0.26 V overpotential and reaches a Faradaic efficiency of 94% and a partial current density of 31 mA/cm2 at a 0.56 V overpotential. With a SnO2-based cathode catalyst, the HCOO–-selective cell starts to operate at a 0.76 V overpotential and reaches a Faradaic efficiency of 82% and a partial current density of 113 mA/cm2 at a 1.36 V overpotential. In contrast to previous studies, we found that the overpotential reduction from using the alkaline electrolyte is mostly contributed by a pH gradient near the cathode surface.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.8b01681</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4810-9112</orcidid><orcidid>https://orcid.org/0000-0003-4409-2034</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2380-8195 |
ispartof | ACS energy letters, 2018-10, Vol.3 (10), p.2527-2532 |
issn | 2380-8195 2380-8195 |
language | eng |
recordid | cdi_acs_journals_10_1021_acsenergylett_8b01681 |
source | ACS Publications |
title | High-Performance Electrochemical CO2 Reduction Cells Based on Non-noble Metal Catalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Electrochemical%20CO2%20Reduction%20Cells%20Based%20on%20Non-noble%20Metal%20Catalysts&rft.jtitle=ACS%20energy%20letters&rft.au=Lu,%20Xu&rft.date=2018-10-12&rft.volume=3&rft.issue=10&rft.spage=2527&rft.epage=2532&rft.pages=2527-2532&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.8b01681&rft_dat=%3Cacs%3Eb574592765%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |