High-Performance Electrochemical CO2 Reduction Cells Based on Non-noble Metal Catalysts

The promise and challenge of electrochemical mitigation of CO2 calls for innovations on both catalyst and reactor levels. In this work, enabled by our high-performance and earth-abundant CO2 electroreduction catalyst materials, we developed alkaline microflow electrolytic cells for energy-efficient,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS energy letters 2018-10, Vol.3 (10), p.2527-2532
Hauptverfasser: Lu, Xu, Wu, Yueshen, Yuan, Xiaolei, Huang, Ling, Wu, Zishan, Xuan, Jin, Wang, Yifei, Wang, Hailiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2532
container_issue 10
container_start_page 2527
container_title ACS energy letters
container_volume 3
creator Lu, Xu
Wu, Yueshen
Yuan, Xiaolei
Huang, Ling
Wu, Zishan
Xuan, Jin
Wang, Yifei
Wang, Hailiang
description The promise and challenge of electrochemical mitigation of CO2 calls for innovations on both catalyst and reactor levels. In this work, enabled by our high-performance and earth-abundant CO2 electroreduction catalyst materials, we developed alkaline microflow electrolytic cells for energy-efficient, selective, fast, and durable CO2 conversion to CO and HCOO–. With a cobalt phthalocyanine-based cathode catalyst, the CO-selective cell starts to operate at a 0.26 V overpotential and reaches a Faradaic efficiency of 94% and a partial current density of 31 mA/cm2 at a 0.56 V overpotential. With a SnO2-based cathode catalyst, the HCOO–-selective cell starts to operate at a 0.76 V overpotential and reaches a Faradaic efficiency of 82% and a partial current density of 113 mA/cm2 at a 1.36 V overpotential. In contrast to previous studies, we found that the overpotential reduction from using the alkaline electrolyte is mostly contributed by a pH gradient near the cathode surface.
doi_str_mv 10.1021/acsenergylett.8b01681
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsenergylett_8b01681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b574592765</sourcerecordid><originalsourceid>FETCH-LOGICAL-a310t-d9d4289b679439a524c660d379d5f862220bd470551e5a013e1af08b35799c0d3</originalsourceid><addsrcrecordid>eNpVkG9LwzAQh4MoOOY-gpAvkHlJmjZ5qWW6wXQiii9Lmlz3h6yFJnuxb2-Le6Ec3P0OHu7gIeSew5yD4A_WRWyx354DpjTXNfBc8ysyEVID09yo6z_5lsxiPACMkBpqQr6X--2OvWPfdP3Rtg7pIqBLfed2eNw7G2i5EfQD_cmlfdfSEkOI9MlG9HRY37qWtV0dkL5iGmE79HNM8Y7cNDZEnF3mlHw9Lz7LJVtvXlbl45pZySExb3wmtKnzwmTSWCUyl-fgZWG8anQuhIDaZwUoxVFZ4BK5bUDXUhXGuAGcEv57d_BQHbpT3w7fKg7VKKf6J6e6yJE_QotbLw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Performance Electrochemical CO2 Reduction Cells Based on Non-noble Metal Catalysts</title><source>ACS Publications</source><creator>Lu, Xu ; Wu, Yueshen ; Yuan, Xiaolei ; Huang, Ling ; Wu, Zishan ; Xuan, Jin ; Wang, Yifei ; Wang, Hailiang</creator><creatorcontrib>Lu, Xu ; Wu, Yueshen ; Yuan, Xiaolei ; Huang, Ling ; Wu, Zishan ; Xuan, Jin ; Wang, Yifei ; Wang, Hailiang</creatorcontrib><description>The promise and challenge of electrochemical mitigation of CO2 calls for innovations on both catalyst and reactor levels. In this work, enabled by our high-performance and earth-abundant CO2 electroreduction catalyst materials, we developed alkaline microflow electrolytic cells for energy-efficient, selective, fast, and durable CO2 conversion to CO and HCOO–. With a cobalt phthalocyanine-based cathode catalyst, the CO-selective cell starts to operate at a 0.26 V overpotential and reaches a Faradaic efficiency of 94% and a partial current density of 31 mA/cm2 at a 0.56 V overpotential. With a SnO2-based cathode catalyst, the HCOO–-selective cell starts to operate at a 0.76 V overpotential and reaches a Faradaic efficiency of 82% and a partial current density of 113 mA/cm2 at a 1.36 V overpotential. In contrast to previous studies, we found that the overpotential reduction from using the alkaline electrolyte is mostly contributed by a pH gradient near the cathode surface.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.8b01681</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS energy letters, 2018-10, Vol.3 (10), p.2527-2532</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4810-9112 ; 0000-0003-4409-2034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsenergylett.8b01681$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsenergylett.8b01681$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Lu, Xu</creatorcontrib><creatorcontrib>Wu, Yueshen</creatorcontrib><creatorcontrib>Yuan, Xiaolei</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Wu, Zishan</creatorcontrib><creatorcontrib>Xuan, Jin</creatorcontrib><creatorcontrib>Wang, Yifei</creatorcontrib><creatorcontrib>Wang, Hailiang</creatorcontrib><title>High-Performance Electrochemical CO2 Reduction Cells Based on Non-noble Metal Catalysts</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>The promise and challenge of electrochemical mitigation of CO2 calls for innovations on both catalyst and reactor levels. In this work, enabled by our high-performance and earth-abundant CO2 electroreduction catalyst materials, we developed alkaline microflow electrolytic cells for energy-efficient, selective, fast, and durable CO2 conversion to CO and HCOO–. With a cobalt phthalocyanine-based cathode catalyst, the CO-selective cell starts to operate at a 0.26 V overpotential and reaches a Faradaic efficiency of 94% and a partial current density of 31 mA/cm2 at a 0.56 V overpotential. With a SnO2-based cathode catalyst, the HCOO–-selective cell starts to operate at a 0.76 V overpotential and reaches a Faradaic efficiency of 82% and a partial current density of 113 mA/cm2 at a 1.36 V overpotential. In contrast to previous studies, we found that the overpotential reduction from using the alkaline electrolyte is mostly contributed by a pH gradient near the cathode surface.</description><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpVkG9LwzAQh4MoOOY-gpAvkHlJmjZ5qWW6wXQiii9Lmlz3h6yFJnuxb2-Le6Ec3P0OHu7gIeSew5yD4A_WRWyx354DpjTXNfBc8ysyEVID09yo6z_5lsxiPACMkBpqQr6X--2OvWPfdP3Rtg7pIqBLfed2eNw7G2i5EfQD_cmlfdfSEkOI9MlG9HRY37qWtV0dkL5iGmE79HNM8Y7cNDZEnF3mlHw9Lz7LJVtvXlbl45pZySExb3wmtKnzwmTSWCUyl-fgZWG8anQuhIDaZwUoxVFZ4BK5bUDXUhXGuAGcEv57d_BQHbpT3w7fKg7VKKf6J6e6yJE_QotbLw</recordid><startdate>20181012</startdate><enddate>20181012</enddate><creator>Lu, Xu</creator><creator>Wu, Yueshen</creator><creator>Yuan, Xiaolei</creator><creator>Huang, Ling</creator><creator>Wu, Zishan</creator><creator>Xuan, Jin</creator><creator>Wang, Yifei</creator><creator>Wang, Hailiang</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-4810-9112</orcidid><orcidid>https://orcid.org/0000-0003-4409-2034</orcidid></search><sort><creationdate>20181012</creationdate><title>High-Performance Electrochemical CO2 Reduction Cells Based on Non-noble Metal Catalysts</title><author>Lu, Xu ; Wu, Yueshen ; Yuan, Xiaolei ; Huang, Ling ; Wu, Zishan ; Xuan, Jin ; Wang, Yifei ; Wang, Hailiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a310t-d9d4289b679439a524c660d379d5f862220bd470551e5a013e1af08b35799c0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xu</creatorcontrib><creatorcontrib>Wu, Yueshen</creatorcontrib><creatorcontrib>Yuan, Xiaolei</creatorcontrib><creatorcontrib>Huang, Ling</creatorcontrib><creatorcontrib>Wu, Zishan</creatorcontrib><creatorcontrib>Xuan, Jin</creatorcontrib><creatorcontrib>Wang, Yifei</creatorcontrib><creatorcontrib>Wang, Hailiang</creatorcontrib><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xu</au><au>Wu, Yueshen</au><au>Yuan, Xiaolei</au><au>Huang, Ling</au><au>Wu, Zishan</au><au>Xuan, Jin</au><au>Wang, Yifei</au><au>Wang, Hailiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Performance Electrochemical CO2 Reduction Cells Based on Non-noble Metal Catalysts</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2018-10-12</date><risdate>2018</risdate><volume>3</volume><issue>10</issue><spage>2527</spage><epage>2532</epage><pages>2527-2532</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>The promise and challenge of electrochemical mitigation of CO2 calls for innovations on both catalyst and reactor levels. In this work, enabled by our high-performance and earth-abundant CO2 electroreduction catalyst materials, we developed alkaline microflow electrolytic cells for energy-efficient, selective, fast, and durable CO2 conversion to CO and HCOO–. With a cobalt phthalocyanine-based cathode catalyst, the CO-selective cell starts to operate at a 0.26 V overpotential and reaches a Faradaic efficiency of 94% and a partial current density of 31 mA/cm2 at a 0.56 V overpotential. With a SnO2-based cathode catalyst, the HCOO–-selective cell starts to operate at a 0.76 V overpotential and reaches a Faradaic efficiency of 82% and a partial current density of 113 mA/cm2 at a 1.36 V overpotential. In contrast to previous studies, we found that the overpotential reduction from using the alkaline electrolyte is mostly contributed by a pH gradient near the cathode surface.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.8b01681</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4810-9112</orcidid><orcidid>https://orcid.org/0000-0003-4409-2034</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2380-8195
ispartof ACS energy letters, 2018-10, Vol.3 (10), p.2527-2532
issn 2380-8195
2380-8195
language eng
recordid cdi_acs_journals_10_1021_acsenergylett_8b01681
source ACS Publications
title High-Performance Electrochemical CO2 Reduction Cells Based on Non-noble Metal Catalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Performance%20Electrochemical%20CO2%20Reduction%20Cells%20Based%20on%20Non-noble%20Metal%20Catalysts&rft.jtitle=ACS%20energy%20letters&rft.au=Lu,%20Xu&rft.date=2018-10-12&rft.volume=3&rft.issue=10&rft.spage=2527&rft.epage=2532&rft.pages=2527-2532&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.8b01681&rft_dat=%3Cacs%3Eb574592765%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true