Dual-Function ZnO-Li3TaO4 Surface Modification of Single-Crystalline Ni-Rich Cathodes for All-Solid-State Batteries

Herein, we introduce a ZnO–Li3TaO4 composite coating designed to stabilize single-crystalline LiNi0.95Co0.03Mn0.015Al0.005O2 (sNCMA) in ASSBs with Li6PS5Cl. This dual-function coating establishes a Ta-rich surface layer and Zn-doped near-surface regions, as verified by detailed analyses, including a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS energy letters 2024-11, Vol.9 (11), p.5403-5412
Hauptverfasser: Son, Jun Pyo, Kim, Jae-Seung, Lee, Chang-Gi, Park, Juhyoun, Kim, Jong Seok, Kim, Se-Ho, Gault, Baptiste, Seo, Dong-Hwa, Jung, Yoon Seok
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5412
container_issue 11
container_start_page 5403
container_title ACS energy letters
container_volume 9
creator Son, Jun Pyo
Kim, Jae-Seung
Lee, Chang-Gi
Park, Juhyoun
Kim, Jong Seok
Kim, Se-Ho
Gault, Baptiste
Seo, Dong-Hwa
Jung, Yoon Seok
description Herein, we introduce a ZnO–Li3TaO4 composite coating designed to stabilize single-crystalline LiNi0.95Co0.03Mn0.015Al0.005O2 (sNCMA) in ASSBs with Li6PS5Cl. This dual-function coating establishes a Ta-rich surface layer and Zn-doped near-surface regions, as verified by detailed analyses, including atom probe tomography and transmission electron microscopy. The ZnO-Li3TaO4 coating markedly enhances both interfacial and structural stabilities, showcasing an exceptional performance in sNCMA|Li6PS5Cl|(Li–In) cells at 30 °C (initial discharge capacity of 196 mA h g–1 with 82.7% capacity retention after 1000 cycles), exceeding the performance of both uncoated or only Li3TaO4-coated sNCMA (only 82.5 or 84.2%, respectively, after 200 cycles). The protective role of ZnO-Li3TaO4 is corroborated by electrochemical impedance spectroscopy and ex situ X-ray photoelectron spectroscopy. Finally, density functional theory calculations and comparative tests with oxidatively inert Li2ZrCl6 catholytes elucidate the enhanced performance mechanism, specifically, the suppression of Ni2+ migration by Zn doping, emphasizing the importance of cathode structural stability in all-solid-state batteries.
doi_str_mv 10.1021/acsenergylett.4c02016
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsenergylett_4c02016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b180839238</sourcerecordid><originalsourceid>FETCH-LOGICAL-a127t-625b8351c840151aa9a896dd7f89e322b903b098bd0c31ba3be4a051dacb17d03</originalsourceid><addsrcrecordid>eNpVkM1KAzEcxIMoWGofQcgLpOZjt80e62pVqBbcevGy_POxbUpIYJM99O1dtQdlDjOHYQZ-CN0yOmeUszvQyQbb70_e5jwvNOWULS7QhAtJiWRVefknX6NZSkdKx4osR01QehjAk_UQdHYx4M-wJRsndrAtcDP0HWiLX6NxndPwU4gdblzYe0vq_pQyeO-CxW-OvDt9wDXkQzQ24S72eOU9aaJ3hjQZssX3kLPtnU036KoDn-zs7FP0sX7c1c9ks316qVcbAowvM1nwUklRMi0LykoGUIGsFsYsO1lZwbmqqFC0kspQLZgCoWwBtGQGtGJLQ8UUsd_dkVF7jEMfxreW0fYbXPsPXHsGJ74AELtl1w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dual-Function ZnO-Li3TaO4 Surface Modification of Single-Crystalline Ni-Rich Cathodes for All-Solid-State Batteries</title><source>American Chemical Society Journals</source><creator>Son, Jun Pyo ; Kim, Jae-Seung ; Lee, Chang-Gi ; Park, Juhyoun ; Kim, Jong Seok ; Kim, Se-Ho ; Gault, Baptiste ; Seo, Dong-Hwa ; Jung, Yoon Seok</creator><creatorcontrib>Son, Jun Pyo ; Kim, Jae-Seung ; Lee, Chang-Gi ; Park, Juhyoun ; Kim, Jong Seok ; Kim, Se-Ho ; Gault, Baptiste ; Seo, Dong-Hwa ; Jung, Yoon Seok</creatorcontrib><description>Herein, we introduce a ZnO–Li3TaO4 composite coating designed to stabilize single-crystalline LiNi0.95Co0.03Mn0.015Al0.005O2 (sNCMA) in ASSBs with Li6PS5Cl. This dual-function coating establishes a Ta-rich surface layer and Zn-doped near-surface regions, as verified by detailed analyses, including atom probe tomography and transmission electron microscopy. The ZnO-Li3TaO4 coating markedly enhances both interfacial and structural stabilities, showcasing an exceptional performance in sNCMA|Li6PS5Cl|(Li–In) cells at 30 °C (initial discharge capacity of 196 mA h g–1 with 82.7% capacity retention after 1000 cycles), exceeding the performance of both uncoated or only Li3TaO4-coated sNCMA (only 82.5 or 84.2%, respectively, after 200 cycles). The protective role of ZnO-Li3TaO4 is corroborated by electrochemical impedance spectroscopy and ex situ X-ray photoelectron spectroscopy. Finally, density functional theory calculations and comparative tests with oxidatively inert Li2ZrCl6 catholytes elucidate the enhanced performance mechanism, specifically, the suppression of Ni2+ migration by Zn doping, emphasizing the importance of cathode structural stability in all-solid-state batteries.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.4c02016</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS energy letters, 2024-11, Vol.9 (11), p.5403-5412</ispartof><rights>2024 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3052-6444 ; 0000-0003-0357-9508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsenergylett.4c02016$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsenergylett.4c02016$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Son, Jun Pyo</creatorcontrib><creatorcontrib>Kim, Jae-Seung</creatorcontrib><creatorcontrib>Lee, Chang-Gi</creatorcontrib><creatorcontrib>Park, Juhyoun</creatorcontrib><creatorcontrib>Kim, Jong Seok</creatorcontrib><creatorcontrib>Kim, Se-Ho</creatorcontrib><creatorcontrib>Gault, Baptiste</creatorcontrib><creatorcontrib>Seo, Dong-Hwa</creatorcontrib><creatorcontrib>Jung, Yoon Seok</creatorcontrib><title>Dual-Function ZnO-Li3TaO4 Surface Modification of Single-Crystalline Ni-Rich Cathodes for All-Solid-State Batteries</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>Herein, we introduce a ZnO–Li3TaO4 composite coating designed to stabilize single-crystalline LiNi0.95Co0.03Mn0.015Al0.005O2 (sNCMA) in ASSBs with Li6PS5Cl. This dual-function coating establishes a Ta-rich surface layer and Zn-doped near-surface regions, as verified by detailed analyses, including atom probe tomography and transmission electron microscopy. The ZnO-Li3TaO4 coating markedly enhances both interfacial and structural stabilities, showcasing an exceptional performance in sNCMA|Li6PS5Cl|(Li–In) cells at 30 °C (initial discharge capacity of 196 mA h g–1 with 82.7% capacity retention after 1000 cycles), exceeding the performance of both uncoated or only Li3TaO4-coated sNCMA (only 82.5 or 84.2%, respectively, after 200 cycles). The protective role of ZnO-Li3TaO4 is corroborated by electrochemical impedance spectroscopy and ex situ X-ray photoelectron spectroscopy. Finally, density functional theory calculations and comparative tests with oxidatively inert Li2ZrCl6 catholytes elucidate the enhanced performance mechanism, specifically, the suppression of Ni2+ migration by Zn doping, emphasizing the importance of cathode structural stability in all-solid-state batteries.</description><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpVkM1KAzEcxIMoWGofQcgLpOZjt80e62pVqBbcevGy_POxbUpIYJM99O1dtQdlDjOHYQZ-CN0yOmeUszvQyQbb70_e5jwvNOWULS7QhAtJiWRVefknX6NZSkdKx4osR01QehjAk_UQdHYx4M-wJRsndrAtcDP0HWiLX6NxndPwU4gdblzYe0vq_pQyeO-CxW-OvDt9wDXkQzQ24S72eOU9aaJ3hjQZssX3kLPtnU036KoDn-zs7FP0sX7c1c9ks316qVcbAowvM1nwUklRMi0LykoGUIGsFsYsO1lZwbmqqFC0kspQLZgCoWwBtGQGtGJLQ8UUsd_dkVF7jEMfxreW0fYbXPsPXHsGJ74AELtl1w</recordid><startdate>20241108</startdate><enddate>20241108</enddate><creator>Son, Jun Pyo</creator><creator>Kim, Jae-Seung</creator><creator>Lee, Chang-Gi</creator><creator>Park, Juhyoun</creator><creator>Kim, Jong Seok</creator><creator>Kim, Se-Ho</creator><creator>Gault, Baptiste</creator><creator>Seo, Dong-Hwa</creator><creator>Jung, Yoon Seok</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-3052-6444</orcidid><orcidid>https://orcid.org/0000-0003-0357-9508</orcidid></search><sort><creationdate>20241108</creationdate><title>Dual-Function ZnO-Li3TaO4 Surface Modification of Single-Crystalline Ni-Rich Cathodes for All-Solid-State Batteries</title><author>Son, Jun Pyo ; Kim, Jae-Seung ; Lee, Chang-Gi ; Park, Juhyoun ; Kim, Jong Seok ; Kim, Se-Ho ; Gault, Baptiste ; Seo, Dong-Hwa ; Jung, Yoon Seok</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a127t-625b8351c840151aa9a896dd7f89e322b903b098bd0c31ba3be4a051dacb17d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Son, Jun Pyo</creatorcontrib><creatorcontrib>Kim, Jae-Seung</creatorcontrib><creatorcontrib>Lee, Chang-Gi</creatorcontrib><creatorcontrib>Park, Juhyoun</creatorcontrib><creatorcontrib>Kim, Jong Seok</creatorcontrib><creatorcontrib>Kim, Se-Ho</creatorcontrib><creatorcontrib>Gault, Baptiste</creatorcontrib><creatorcontrib>Seo, Dong-Hwa</creatorcontrib><creatorcontrib>Jung, Yoon Seok</creatorcontrib><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Son, Jun Pyo</au><au>Kim, Jae-Seung</au><au>Lee, Chang-Gi</au><au>Park, Juhyoun</au><au>Kim, Jong Seok</au><au>Kim, Se-Ho</au><au>Gault, Baptiste</au><au>Seo, Dong-Hwa</au><au>Jung, Yoon Seok</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-Function ZnO-Li3TaO4 Surface Modification of Single-Crystalline Ni-Rich Cathodes for All-Solid-State Batteries</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2024-11-08</date><risdate>2024</risdate><volume>9</volume><issue>11</issue><spage>5403</spage><epage>5412</epage><pages>5403-5412</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>Herein, we introduce a ZnO–Li3TaO4 composite coating designed to stabilize single-crystalline LiNi0.95Co0.03Mn0.015Al0.005O2 (sNCMA) in ASSBs with Li6PS5Cl. This dual-function coating establishes a Ta-rich surface layer and Zn-doped near-surface regions, as verified by detailed analyses, including atom probe tomography and transmission electron microscopy. The ZnO-Li3TaO4 coating markedly enhances both interfacial and structural stabilities, showcasing an exceptional performance in sNCMA|Li6PS5Cl|(Li–In) cells at 30 °C (initial discharge capacity of 196 mA h g–1 with 82.7% capacity retention after 1000 cycles), exceeding the performance of both uncoated or only Li3TaO4-coated sNCMA (only 82.5 or 84.2%, respectively, after 200 cycles). The protective role of ZnO-Li3TaO4 is corroborated by electrochemical impedance spectroscopy and ex situ X-ray photoelectron spectroscopy. Finally, density functional theory calculations and comparative tests with oxidatively inert Li2ZrCl6 catholytes elucidate the enhanced performance mechanism, specifically, the suppression of Ni2+ migration by Zn doping, emphasizing the importance of cathode structural stability in all-solid-state batteries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.4c02016</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3052-6444</orcidid><orcidid>https://orcid.org/0000-0003-0357-9508</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2380-8195
ispartof ACS energy letters, 2024-11, Vol.9 (11), p.5403-5412
issn 2380-8195
2380-8195
language eng
recordid cdi_acs_journals_10_1021_acsenergylett_4c02016
source American Chemical Society Journals
title Dual-Function ZnO-Li3TaO4 Surface Modification of Single-Crystalline Ni-Rich Cathodes for All-Solid-State Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-Function%20ZnO-Li3TaO4%20Surface%20Modification%20of%20Single-Crystalline%20Ni-Rich%20Cathodes%20for%20All-Solid-State%20Batteries&rft.jtitle=ACS%20energy%20letters&rft.au=Son,%20Jun%20Pyo&rft.date=2024-11-08&rft.volume=9&rft.issue=11&rft.spage=5403&rft.epage=5412&rft.pages=5403-5412&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.4c02016&rft_dat=%3Cacs%3Eb180839238%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true