Energy-Efficient Ethanol Concentration Method for Scalable CO2 Electrolysis

Electrosynthesis of ethanol from carbon dioxide (CO2) is a promising route to generate a sustainable fuel and a convenient feedstock for chemical manufacturing. While significant progress has been achieved in boosting the selectivity of CO2 to ethanol, the subsequent ethanol separation remains a bot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS energy letters 2023-07, Vol.8 (7), p.3214-3220
Hauptverfasser: Barecka, Magda H., DS Dameni, Pritika, Zakir Muhamad, Marsha, Ager, Joel W., Lapkin, Alexei A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3220
container_issue 7
container_start_page 3214
container_title ACS energy letters
container_volume 8
creator Barecka, Magda H.
DS Dameni, Pritika
Zakir Muhamad, Marsha
Ager, Joel W.
Lapkin, Alexei A.
description Electrosynthesis of ethanol from carbon dioxide (CO2) is a promising route to generate a sustainable fuel and a convenient feedstock for chemical manufacturing. While significant progress has been achieved in boosting the selectivity of CO2 to ethanol, the subsequent ethanol separation remains a bottleneck, which prevents leveraging the laboratory results into large-scale systems. Here we report vacuum membrane distillation as a method that efficiently concentrates dilute ethanol streams produced by CO2 electrolysis (CO2R), yielding up to ∼40 wt% ethanol in pure water. In our design considerations, we include previously underappreciated thermodynamic properties of the catholyte (salting-out effect) and propose strategies allowing a more precise estimation of energy inputs to the separation processes. Our work provides the basis for the detailed design of complex systems which integrate flow reactors and liquid separations and supports scaling of the systems previously considered not optimized for industrial use.
doi_str_mv 10.1021/acsenergylett.3c00973
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsenergylett_3c00973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a51239161</sourcerecordid><originalsourceid>FETCH-LOGICAL-a244t-22851a02b855d572a977d26d3ece6e693ee55409ef8ab08c6582ce916d99c1db3</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhC0EElXpIyD5BVLWdu3YRxSFH1HUA3COHHtDU1m2FJtD354APVDtYXcOs6P5CLllsGbA2Z11GSNOn8eApayFAzC1uCALLjRUmhl5-e--JqucDwDAlJbzLMhL-2uu2mEY3Yix0LbsbUyBNim6WU-2jCnSVyz75OmQJvrmbLB9QNrsOG0DujKlcMxjviFXgw0ZV6e9JB8P7XvzVG13j8_N_bayfLMpFedaMgu811J6WXNr6tpz5QU6VKiMQJRyAwYHbXvQTknNHRqmvDGO-V4sCfv7O3fvDulrinNax6D7AdKdAelOQMQ3IEhYXA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Energy-Efficient Ethanol Concentration Method for Scalable CO2 Electrolysis</title><source>American Chemical Society Journals</source><creator>Barecka, Magda H. ; DS Dameni, Pritika ; Zakir Muhamad, Marsha ; Ager, Joel W. ; Lapkin, Alexei A.</creator><creatorcontrib>Barecka, Magda H. ; DS Dameni, Pritika ; Zakir Muhamad, Marsha ; Ager, Joel W. ; Lapkin, Alexei A.</creatorcontrib><description>Electrosynthesis of ethanol from carbon dioxide (CO2) is a promising route to generate a sustainable fuel and a convenient feedstock for chemical manufacturing. While significant progress has been achieved in boosting the selectivity of CO2 to ethanol, the subsequent ethanol separation remains a bottleneck, which prevents leveraging the laboratory results into large-scale systems. Here we report vacuum membrane distillation as a method that efficiently concentrates dilute ethanol streams produced by CO2 electrolysis (CO2R), yielding up to ∼40 wt% ethanol in pure water. In our design considerations, we include previously underappreciated thermodynamic properties of the catholyte (salting-out effect) and propose strategies allowing a more precise estimation of energy inputs to the separation processes. Our work provides the basis for the detailed design of complex systems which integrate flow reactors and liquid separations and supports scaling of the systems previously considered not optimized for industrial use.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.3c00973</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS energy letters, 2023-07, Vol.8 (7), p.3214-3220</ispartof><rights>2023 American Chemical Society</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9334-9751 ; 0000-0002-0772-164X ; 0000-0001-7621-0889</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsenergylett.3c00973$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsenergylett.3c00973$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Barecka, Magda H.</creatorcontrib><creatorcontrib>DS Dameni, Pritika</creatorcontrib><creatorcontrib>Zakir Muhamad, Marsha</creatorcontrib><creatorcontrib>Ager, Joel W.</creatorcontrib><creatorcontrib>Lapkin, Alexei A.</creatorcontrib><title>Energy-Efficient Ethanol Concentration Method for Scalable CO2 Electrolysis</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>Electrosynthesis of ethanol from carbon dioxide (CO2) is a promising route to generate a sustainable fuel and a convenient feedstock for chemical manufacturing. While significant progress has been achieved in boosting the selectivity of CO2 to ethanol, the subsequent ethanol separation remains a bottleneck, which prevents leveraging the laboratory results into large-scale systems. Here we report vacuum membrane distillation as a method that efficiently concentrates dilute ethanol streams produced by CO2 electrolysis (CO2R), yielding up to ∼40 wt% ethanol in pure water. In our design considerations, we include previously underappreciated thermodynamic properties of the catholyte (salting-out effect) and propose strategies allowing a more precise estimation of energy inputs to the separation processes. Our work provides the basis for the detailed design of complex systems which integrate flow reactors and liquid separations and supports scaling of the systems previously considered not optimized for industrial use.</description><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpVkM1OwzAQhC0EElXpIyD5BVLWdu3YRxSFH1HUA3COHHtDU1m2FJtD354APVDtYXcOs6P5CLllsGbA2Z11GSNOn8eApayFAzC1uCALLjRUmhl5-e--JqucDwDAlJbzLMhL-2uu2mEY3Yix0LbsbUyBNim6WU-2jCnSVyz75OmQJvrmbLB9QNrsOG0DujKlcMxjviFXgw0ZV6e9JB8P7XvzVG13j8_N_bayfLMpFedaMgu811J6WXNr6tpz5QU6VKiMQJRyAwYHbXvQTknNHRqmvDGO-V4sCfv7O3fvDulrinNax6D7AdKdAelOQMQ3IEhYXA</recordid><startdate>20230714</startdate><enddate>20230714</enddate><creator>Barecka, Magda H.</creator><creator>DS Dameni, Pritika</creator><creator>Zakir Muhamad, Marsha</creator><creator>Ager, Joel W.</creator><creator>Lapkin, Alexei A.</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-9334-9751</orcidid><orcidid>https://orcid.org/0000-0002-0772-164X</orcidid><orcidid>https://orcid.org/0000-0001-7621-0889</orcidid></search><sort><creationdate>20230714</creationdate><title>Energy-Efficient Ethanol Concentration Method for Scalable CO2 Electrolysis</title><author>Barecka, Magda H. ; DS Dameni, Pritika ; Zakir Muhamad, Marsha ; Ager, Joel W. ; Lapkin, Alexei A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a244t-22851a02b855d572a977d26d3ece6e693ee55409ef8ab08c6582ce916d99c1db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Barecka, Magda H.</creatorcontrib><creatorcontrib>DS Dameni, Pritika</creatorcontrib><creatorcontrib>Zakir Muhamad, Marsha</creatorcontrib><creatorcontrib>Ager, Joel W.</creatorcontrib><creatorcontrib>Lapkin, Alexei A.</creatorcontrib><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barecka, Magda H.</au><au>DS Dameni, Pritika</au><au>Zakir Muhamad, Marsha</au><au>Ager, Joel W.</au><au>Lapkin, Alexei A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Efficient Ethanol Concentration Method for Scalable CO2 Electrolysis</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2023-07-14</date><risdate>2023</risdate><volume>8</volume><issue>7</issue><spage>3214</spage><epage>3220</epage><pages>3214-3220</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>Electrosynthesis of ethanol from carbon dioxide (CO2) is a promising route to generate a sustainable fuel and a convenient feedstock for chemical manufacturing. While significant progress has been achieved in boosting the selectivity of CO2 to ethanol, the subsequent ethanol separation remains a bottleneck, which prevents leveraging the laboratory results into large-scale systems. Here we report vacuum membrane distillation as a method that efficiently concentrates dilute ethanol streams produced by CO2 electrolysis (CO2R), yielding up to ∼40 wt% ethanol in pure water. In our design considerations, we include previously underappreciated thermodynamic properties of the catholyte (salting-out effect) and propose strategies allowing a more precise estimation of energy inputs to the separation processes. Our work provides the basis for the detailed design of complex systems which integrate flow reactors and liquid separations and supports scaling of the systems previously considered not optimized for industrial use.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.3c00973</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9334-9751</orcidid><orcidid>https://orcid.org/0000-0002-0772-164X</orcidid><orcidid>https://orcid.org/0000-0001-7621-0889</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2380-8195
ispartof ACS energy letters, 2023-07, Vol.8 (7), p.3214-3220
issn 2380-8195
2380-8195
language eng
recordid cdi_acs_journals_10_1021_acsenergylett_3c00973
source American Chemical Society Journals
title Energy-Efficient Ethanol Concentration Method for Scalable CO2 Electrolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A09%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Efficient%20Ethanol%20Concentration%20Method%20for%20Scalable%20CO2%20Electrolysis&rft.jtitle=ACS%20energy%20letters&rft.au=Barecka,%20Magda%20H.&rft.date=2023-07-14&rft.volume=8&rft.issue=7&rft.spage=3214&rft.epage=3220&rft.pages=3214-3220&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.3c00973&rft_dat=%3Cacs%3Ea51239161%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true