Downstream of the CO2 Electrolyzer: Assessing the Energy Intensity of Product Separation

The electrochemical reduction of carbon dioxide (CO2RR) to chemical feedstocks, such as ethylene (C2H4), is an attractive means to mitigate emissions and store intermittent renewable electricity. Much research has focused on improving CO2 electrolysis cell efficiency; less attention has been paid to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS energy letters 2021-12, Vol.6 (12), p.4405-4412
Hauptverfasser: Alerte, Théo, Edwards, Jonathan P, Gabardo, Christine M, O’Brien, Colin P, Gaona, Adriana, Wicks, Joshua, Obradović, Ana, Sarkar, Amitava, Jaffer, Shaffiq A, MacLean, Heather L, Sinton, David, Sargent, Edward H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4412
container_issue 12
container_start_page 4405
container_title ACS energy letters
container_volume 6
creator Alerte, Théo
Edwards, Jonathan P
Gabardo, Christine M
O’Brien, Colin P
Gaona, Adriana
Wicks, Joshua
Obradović, Ana
Sarkar, Amitava
Jaffer, Shaffiq A
MacLean, Heather L
Sinton, David
Sargent, Edward H
description The electrochemical reduction of carbon dioxide (CO2RR) to chemical feedstocks, such as ethylene (C2H4), is an attractive means to mitigate emissions and store intermittent renewable electricity. Much research has focused on improving CO2 electrolysis cell efficiency; less attention has been paid to the downstream purification of outlet product streams. In this work, we model the use of mature downstream separation technologies as part of the overall production of polymer-grade C2H4 from CO2. We find that CO2 removal is the most energy-intensive downstream separation step. We identify opportunities to reduce separation energies to ∼22 GJ/tonne C2H4 through necessary improvements in C2H4 selectivity (>57%), cathodic CO2 conversion (>80%), and CO2 crossover (0 mol CO2/mol e–). This work highlights the influence of cell performance parameters on downstream separation costs and motivates the development of new, efficient separation processes better suited to the distinctive outlet streams of CO2 electrolyzers.
doi_str_mv 10.1021/acsenergylett.1c02263
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsenergylett_1c02263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d67431505</sourcerecordid><originalsourceid>FETCH-LOGICAL-a127t-aff1db091a2c06e57249f22e13b4cd7d0db7eb7416a7aa39cc2e0fcc4caf8e3d3</originalsourceid><addsrcrecordid>eNpVkNFKwzAUhoMoOOYeQcgLdOYkbdN6N-rUwWCCCt6VNDmZHTWVJEPq09vNXSjn4hz4-c8HHyHXwObAONwoHdCh3w4dxjgHzTjPxRmZcFGwpIAyO_9zX5JZCDvGGORFNs6EvN31Xy5Ej-qD9pbGd6TVhtNlhzr6vhu-0d_SRQgYQuu2x3x5xNGVi-hCG4dD78n3Zq8jfcZP5VVse3dFLqzqAs5Oe0pe75cv1WOy3jysqsU6UcBlTJS1YBpWguKa5ZhJnpaWcwTRpNpIw0wjsZEp5EoqJUqtOTKrdaqVLVAYMSXw-3cUUe_6vXcjrQZWH-zU_-zUJzviB-q_XrU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Downstream of the CO2 Electrolyzer: Assessing the Energy Intensity of Product Separation</title><source>ACS Publications</source><creator>Alerte, Théo ; Edwards, Jonathan P ; Gabardo, Christine M ; O’Brien, Colin P ; Gaona, Adriana ; Wicks, Joshua ; Obradović, Ana ; Sarkar, Amitava ; Jaffer, Shaffiq A ; MacLean, Heather L ; Sinton, David ; Sargent, Edward H</creator><creatorcontrib>Alerte, Théo ; Edwards, Jonathan P ; Gabardo, Christine M ; O’Brien, Colin P ; Gaona, Adriana ; Wicks, Joshua ; Obradović, Ana ; Sarkar, Amitava ; Jaffer, Shaffiq A ; MacLean, Heather L ; Sinton, David ; Sargent, Edward H</creatorcontrib><description>The electrochemical reduction of carbon dioxide (CO2RR) to chemical feedstocks, such as ethylene (C2H4), is an attractive means to mitigate emissions and store intermittent renewable electricity. Much research has focused on improving CO2 electrolysis cell efficiency; less attention has been paid to the downstream purification of outlet product streams. In this work, we model the use of mature downstream separation technologies as part of the overall production of polymer-grade C2H4 from CO2. We find that CO2 removal is the most energy-intensive downstream separation step. We identify opportunities to reduce separation energies to ∼22 GJ/tonne C2H4 through necessary improvements in C2H4 selectivity (&gt;57%), cathodic CO2 conversion (&gt;80%), and CO2 crossover (0 mol CO2/mol e–). This work highlights the influence of cell performance parameters on downstream separation costs and motivates the development of new, efficient separation processes better suited to the distinctive outlet streams of CO2 electrolyzers.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.1c02263</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS energy letters, 2021-12, Vol.6 (12), p.4405-4412</ispartof><rights>2021 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0396-6495 ; 0000-0003-2714-6408 ; 0000-0002-9456-6894 ; 0000-0001-7819-1167 ; 0000-0003-4000-5802 ; 0000-0001-9311-4469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsenergylett.1c02263$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsenergylett.1c02263$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Alerte, Théo</creatorcontrib><creatorcontrib>Edwards, Jonathan P</creatorcontrib><creatorcontrib>Gabardo, Christine M</creatorcontrib><creatorcontrib>O’Brien, Colin P</creatorcontrib><creatorcontrib>Gaona, Adriana</creatorcontrib><creatorcontrib>Wicks, Joshua</creatorcontrib><creatorcontrib>Obradović, Ana</creatorcontrib><creatorcontrib>Sarkar, Amitava</creatorcontrib><creatorcontrib>Jaffer, Shaffiq A</creatorcontrib><creatorcontrib>MacLean, Heather L</creatorcontrib><creatorcontrib>Sinton, David</creatorcontrib><creatorcontrib>Sargent, Edward H</creatorcontrib><title>Downstream of the CO2 Electrolyzer: Assessing the Energy Intensity of Product Separation</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>The electrochemical reduction of carbon dioxide (CO2RR) to chemical feedstocks, such as ethylene (C2H4), is an attractive means to mitigate emissions and store intermittent renewable electricity. Much research has focused on improving CO2 electrolysis cell efficiency; less attention has been paid to the downstream purification of outlet product streams. In this work, we model the use of mature downstream separation technologies as part of the overall production of polymer-grade C2H4 from CO2. We find that CO2 removal is the most energy-intensive downstream separation step. We identify opportunities to reduce separation energies to ∼22 GJ/tonne C2H4 through necessary improvements in C2H4 selectivity (&gt;57%), cathodic CO2 conversion (&gt;80%), and CO2 crossover (0 mol CO2/mol e–). This work highlights the influence of cell performance parameters on downstream separation costs and motivates the development of new, efficient separation processes better suited to the distinctive outlet streams of CO2 electrolyzers.</description><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpVkNFKwzAUhoMoOOYeQcgLdOYkbdN6N-rUwWCCCt6VNDmZHTWVJEPq09vNXSjn4hz4-c8HHyHXwObAONwoHdCh3w4dxjgHzTjPxRmZcFGwpIAyO_9zX5JZCDvGGORFNs6EvN31Xy5Ej-qD9pbGd6TVhtNlhzr6vhu-0d_SRQgYQuu2x3x5xNGVi-hCG4dD78n3Zq8jfcZP5VVse3dFLqzqAs5Oe0pe75cv1WOy3jysqsU6UcBlTJS1YBpWguKa5ZhJnpaWcwTRpNpIw0wjsZEp5EoqJUqtOTKrdaqVLVAYMSXw-3cUUe_6vXcjrQZWH-zU_-zUJzviB-q_XrU</recordid><startdate>20211210</startdate><enddate>20211210</enddate><creator>Alerte, Théo</creator><creator>Edwards, Jonathan P</creator><creator>Gabardo, Christine M</creator><creator>O’Brien, Colin P</creator><creator>Gaona, Adriana</creator><creator>Wicks, Joshua</creator><creator>Obradović, Ana</creator><creator>Sarkar, Amitava</creator><creator>Jaffer, Shaffiq A</creator><creator>MacLean, Heather L</creator><creator>Sinton, David</creator><creator>Sargent, Edward H</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-0396-6495</orcidid><orcidid>https://orcid.org/0000-0003-2714-6408</orcidid><orcidid>https://orcid.org/0000-0002-9456-6894</orcidid><orcidid>https://orcid.org/0000-0001-7819-1167</orcidid><orcidid>https://orcid.org/0000-0003-4000-5802</orcidid><orcidid>https://orcid.org/0000-0001-9311-4469</orcidid></search><sort><creationdate>20211210</creationdate><title>Downstream of the CO2 Electrolyzer: Assessing the Energy Intensity of Product Separation</title><author>Alerte, Théo ; Edwards, Jonathan P ; Gabardo, Christine M ; O’Brien, Colin P ; Gaona, Adriana ; Wicks, Joshua ; Obradović, Ana ; Sarkar, Amitava ; Jaffer, Shaffiq A ; MacLean, Heather L ; Sinton, David ; Sargent, Edward H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a127t-aff1db091a2c06e57249f22e13b4cd7d0db7eb7416a7aa39cc2e0fcc4caf8e3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Alerte, Théo</creatorcontrib><creatorcontrib>Edwards, Jonathan P</creatorcontrib><creatorcontrib>Gabardo, Christine M</creatorcontrib><creatorcontrib>O’Brien, Colin P</creatorcontrib><creatorcontrib>Gaona, Adriana</creatorcontrib><creatorcontrib>Wicks, Joshua</creatorcontrib><creatorcontrib>Obradović, Ana</creatorcontrib><creatorcontrib>Sarkar, Amitava</creatorcontrib><creatorcontrib>Jaffer, Shaffiq A</creatorcontrib><creatorcontrib>MacLean, Heather L</creatorcontrib><creatorcontrib>Sinton, David</creatorcontrib><creatorcontrib>Sargent, Edward H</creatorcontrib><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alerte, Théo</au><au>Edwards, Jonathan P</au><au>Gabardo, Christine M</au><au>O’Brien, Colin P</au><au>Gaona, Adriana</au><au>Wicks, Joshua</au><au>Obradović, Ana</au><au>Sarkar, Amitava</au><au>Jaffer, Shaffiq A</au><au>MacLean, Heather L</au><au>Sinton, David</au><au>Sargent, Edward H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Downstream of the CO2 Electrolyzer: Assessing the Energy Intensity of Product Separation</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2021-12-10</date><risdate>2021</risdate><volume>6</volume><issue>12</issue><spage>4405</spage><epage>4412</epage><pages>4405-4412</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>The electrochemical reduction of carbon dioxide (CO2RR) to chemical feedstocks, such as ethylene (C2H4), is an attractive means to mitigate emissions and store intermittent renewable electricity. Much research has focused on improving CO2 electrolysis cell efficiency; less attention has been paid to the downstream purification of outlet product streams. In this work, we model the use of mature downstream separation technologies as part of the overall production of polymer-grade C2H4 from CO2. We find that CO2 removal is the most energy-intensive downstream separation step. We identify opportunities to reduce separation energies to ∼22 GJ/tonne C2H4 through necessary improvements in C2H4 selectivity (&gt;57%), cathodic CO2 conversion (&gt;80%), and CO2 crossover (0 mol CO2/mol e–). This work highlights the influence of cell performance parameters on downstream separation costs and motivates the development of new, efficient separation processes better suited to the distinctive outlet streams of CO2 electrolyzers.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.1c02263</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0396-6495</orcidid><orcidid>https://orcid.org/0000-0003-2714-6408</orcidid><orcidid>https://orcid.org/0000-0002-9456-6894</orcidid><orcidid>https://orcid.org/0000-0001-7819-1167</orcidid><orcidid>https://orcid.org/0000-0003-4000-5802</orcidid><orcidid>https://orcid.org/0000-0001-9311-4469</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2380-8195
ispartof ACS energy letters, 2021-12, Vol.6 (12), p.4405-4412
issn 2380-8195
2380-8195
language eng
recordid cdi_acs_journals_10_1021_acsenergylett_1c02263
source ACS Publications
title Downstream of the CO2 Electrolyzer: Assessing the Energy Intensity of Product Separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Downstream%20of%20the%20CO2%20Electrolyzer:%20Assessing%20the%20Energy%20Intensity%20of%20Product%20Separation&rft.jtitle=ACS%20energy%20letters&rft.au=Alerte,%20The%CC%81o&rft.date=2021-12-10&rft.volume=6&rft.issue=12&rft.spage=4405&rft.epage=4412&rft.pages=4405-4412&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.1c02263&rft_dat=%3Cacs%3Ed67431505%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true