The Role of Bicarbonate-Based Electrolytes in H2O2 Production through Two-Electron Water Oxidation

Two-electron water oxidation (2e–WOR) is a promising route toward efficient production of a valuable product in H2O2. Recent attention has focused on developing new electrocatalysts for 2e–WOR, but the role of the electrolyte species in determining water oxidation selectivity and promoting 2e–WOR ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS energy letters 2021-08, Vol.6 (8), p.2854-2862
Hauptverfasser: Gill, Thomas Mark, Vallez, Lauren, Zheng, Xiaolin
Format: Artikel
Sprache:eng ; jpn
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2862
container_issue 8
container_start_page 2854
container_title ACS energy letters
container_volume 6
creator Gill, Thomas Mark
Vallez, Lauren
Zheng, Xiaolin
description Two-electron water oxidation (2e–WOR) is a promising route toward efficient production of a valuable product in H2O2. Recent attention has focused on developing new electrocatalysts for 2e–WOR, but the role of the electrolyte species in determining water oxidation selectivity and promoting 2e–WOR has not been established. Here, we use electroanalytical experiments to confirm the role of HCO3 – as a selective 2e–WOR redox catalyst. We find minimal differences in H2O2 consumption pathways among common electrolytes, indicating that the role of HCO3 – is to promote H2O2 production. Mechanistically, our rotating ring disk experiments show that H2O2 is not generated directly at the disk electrode in KHCO3 but formed after a time delay, suggesting electrolyte oxidation and subsequent hydrolysis as the promotional mechanism. Further electrochemical and spectroscopic experiments confirm this hypothesis, demonstrating anodic oxidation of carbonaceous electrolyte species occurs at Faradaic potentials relevant for water oxidation and that these species (likely HCO4 – or C2O6 2–) subsequently oxidize water to H2O2 (t 1/2 ≈ 5 min). The H2O2 production rate at 2.5 V vs RHE scales linearly with the concentration of HCO3 –, confirming the catalytic role of HCO3 – in 2e–WOR and suggesting the electrolyte can be leveraged to enhance electrochemical H2O2 production.
doi_str_mv 10.1021/acsenergylett.1c01264
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsenergylett_1c01264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d029170283</sourcerecordid><originalsourceid>FETCH-LOGICAL-a193t-5fd0bfb530c0759caa1b0ab03827a86ffe48ee29a5fc2b726dcc114794f57d343</originalsourceid><addsrcrecordid>eNpVkM1qwzAQhEVpoSHNIxT0Ak53Jcs_xyakTSDgUlJ6NJK8ShyMBbJCm7evQ3NomcPMYWYXPsYeEeYIAp-0HainsD93FOMcLaDI0hs2EbKApMBS3f7J92w2DEcAwKxQoybM7A7E331H3Du-aK0Oxvc6UrLQAzV81ZGNwXfnSANve74WleBvwTcnG1vf83gI_rQ_8N2XT67dnn-O-8Cr77bRl9IDu3O6G2h29Sn7eFntlutkW71uls_bRGMpY6JcA8YZJcFCrkqrNRrQBmQhcl1kzlFaEIlSK2eFyUXWWIuY5mXqVN7IVE4Z_t4dkdRHfwr9-K1GqC-c6n-c6isn-QN272D0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Role of Bicarbonate-Based Electrolytes in H2O2 Production through Two-Electron Water Oxidation</title><source>ACS Publications</source><creator>Gill, Thomas Mark ; Vallez, Lauren ; Zheng, Xiaolin</creator><creatorcontrib>Gill, Thomas Mark ; Vallez, Lauren ; Zheng, Xiaolin</creatorcontrib><description>Two-electron water oxidation (2e–WOR) is a promising route toward efficient production of a valuable product in H2O2. Recent attention has focused on developing new electrocatalysts for 2e–WOR, but the role of the electrolyte species in determining water oxidation selectivity and promoting 2e–WOR has not been established. Here, we use electroanalytical experiments to confirm the role of HCO3 – as a selective 2e–WOR redox catalyst. We find minimal differences in H2O2 consumption pathways among common electrolytes, indicating that the role of HCO3 – is to promote H2O2 production. Mechanistically, our rotating ring disk experiments show that H2O2 is not generated directly at the disk electrode in KHCO3 but formed after a time delay, suggesting electrolyte oxidation and subsequent hydrolysis as the promotional mechanism. Further electrochemical and spectroscopic experiments confirm this hypothesis, demonstrating anodic oxidation of carbonaceous electrolyte species occurs at Faradaic potentials relevant for water oxidation and that these species (likely HCO4 – or C2O6 2–) subsequently oxidize water to H2O2 (t 1/2 ≈ 5 min). The H2O2 production rate at 2.5 V vs RHE scales linearly with the concentration of HCO3 –, confirming the catalytic role of HCO3 – in 2e–WOR and suggesting the electrolyte can be leveraged to enhance electrochemical H2O2 production.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.1c01264</identifier><language>eng ; jpn</language><publisher>American Chemical Society</publisher><ispartof>ACS energy letters, 2021-08, Vol.6 (8), p.2854-2862</ispartof><rights>2021 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8889-7873 ; 0000-0002-0108-1012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsenergylett.1c01264$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsenergylett.1c01264$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Gill, Thomas Mark</creatorcontrib><creatorcontrib>Vallez, Lauren</creatorcontrib><creatorcontrib>Zheng, Xiaolin</creatorcontrib><title>The Role of Bicarbonate-Based Electrolytes in H2O2 Production through Two-Electron Water Oxidation</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>Two-electron water oxidation (2e–WOR) is a promising route toward efficient production of a valuable product in H2O2. Recent attention has focused on developing new electrocatalysts for 2e–WOR, but the role of the electrolyte species in determining water oxidation selectivity and promoting 2e–WOR has not been established. Here, we use electroanalytical experiments to confirm the role of HCO3 – as a selective 2e–WOR redox catalyst. We find minimal differences in H2O2 consumption pathways among common electrolytes, indicating that the role of HCO3 – is to promote H2O2 production. Mechanistically, our rotating ring disk experiments show that H2O2 is not generated directly at the disk electrode in KHCO3 but formed after a time delay, suggesting electrolyte oxidation and subsequent hydrolysis as the promotional mechanism. Further electrochemical and spectroscopic experiments confirm this hypothesis, demonstrating anodic oxidation of carbonaceous electrolyte species occurs at Faradaic potentials relevant for water oxidation and that these species (likely HCO4 – or C2O6 2–) subsequently oxidize water to H2O2 (t 1/2 ≈ 5 min). The H2O2 production rate at 2.5 V vs RHE scales linearly with the concentration of HCO3 –, confirming the catalytic role of HCO3 – in 2e–WOR and suggesting the electrolyte can be leveraged to enhance electrochemical H2O2 production.</description><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpVkM1qwzAQhEVpoSHNIxT0Ak53Jcs_xyakTSDgUlJ6NJK8ShyMBbJCm7evQ3NomcPMYWYXPsYeEeYIAp-0HainsD93FOMcLaDI0hs2EbKApMBS3f7J92w2DEcAwKxQoybM7A7E331H3Du-aK0Oxvc6UrLQAzV81ZGNwXfnSANve74WleBvwTcnG1vf83gI_rQ_8N2XT67dnn-O-8Cr77bRl9IDu3O6G2h29Sn7eFntlutkW71uls_bRGMpY6JcA8YZJcFCrkqrNRrQBmQhcl1kzlFaEIlSK2eFyUXWWIuY5mXqVN7IVE4Z_t4dkdRHfwr9-K1GqC-c6n-c6isn-QN272D0</recordid><startdate>20210813</startdate><enddate>20210813</enddate><creator>Gill, Thomas Mark</creator><creator>Vallez, Lauren</creator><creator>Zheng, Xiaolin</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-8889-7873</orcidid><orcidid>https://orcid.org/0000-0002-0108-1012</orcidid></search><sort><creationdate>20210813</creationdate><title>The Role of Bicarbonate-Based Electrolytes in H2O2 Production through Two-Electron Water Oxidation</title><author>Gill, Thomas Mark ; Vallez, Lauren ; Zheng, Xiaolin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a193t-5fd0bfb530c0759caa1b0ab03827a86ffe48ee29a5fc2b726dcc114794f57d343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Gill, Thomas Mark</creatorcontrib><creatorcontrib>Vallez, Lauren</creatorcontrib><creatorcontrib>Zheng, Xiaolin</creatorcontrib><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gill, Thomas Mark</au><au>Vallez, Lauren</au><au>Zheng, Xiaolin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Bicarbonate-Based Electrolytes in H2O2 Production through Two-Electron Water Oxidation</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2021-08-13</date><risdate>2021</risdate><volume>6</volume><issue>8</issue><spage>2854</spage><epage>2862</epage><pages>2854-2862</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>Two-electron water oxidation (2e–WOR) is a promising route toward efficient production of a valuable product in H2O2. Recent attention has focused on developing new electrocatalysts for 2e–WOR, but the role of the electrolyte species in determining water oxidation selectivity and promoting 2e–WOR has not been established. Here, we use electroanalytical experiments to confirm the role of HCO3 – as a selective 2e–WOR redox catalyst. We find minimal differences in H2O2 consumption pathways among common electrolytes, indicating that the role of HCO3 – is to promote H2O2 production. Mechanistically, our rotating ring disk experiments show that H2O2 is not generated directly at the disk electrode in KHCO3 but formed after a time delay, suggesting electrolyte oxidation and subsequent hydrolysis as the promotional mechanism. Further electrochemical and spectroscopic experiments confirm this hypothesis, demonstrating anodic oxidation of carbonaceous electrolyte species occurs at Faradaic potentials relevant for water oxidation and that these species (likely HCO4 – or C2O6 2–) subsequently oxidize water to H2O2 (t 1/2 ≈ 5 min). The H2O2 production rate at 2.5 V vs RHE scales linearly with the concentration of HCO3 –, confirming the catalytic role of HCO3 – in 2e–WOR and suggesting the electrolyte can be leveraged to enhance electrochemical H2O2 production.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.1c01264</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8889-7873</orcidid><orcidid>https://orcid.org/0000-0002-0108-1012</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2380-8195
ispartof ACS energy letters, 2021-08, Vol.6 (8), p.2854-2862
issn 2380-8195
2380-8195
language eng ; jpn
recordid cdi_acs_journals_10_1021_acsenergylett_1c01264
source ACS Publications
title The Role of Bicarbonate-Based Electrolytes in H2O2 Production through Two-Electron Water Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A23%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Bicarbonate-Based%20Electrolytes%20in%20H2O2%20Production%20through%20Two-Electron%20Water%20Oxidation&rft.jtitle=ACS%20energy%20letters&rft.au=Gill,%20Thomas%20Mark&rft.date=2021-08-13&rft.volume=6&rft.issue=8&rft.spage=2854&rft.epage=2862&rft.pages=2854-2862&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.1c01264&rft_dat=%3Cacs%3Ed029170283%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true