Triazine Ring-Enhanced Transient-State Self-Bipolarized Organic Frameworks for Natural Sunlight-Driven H2O2 Photosynthesis

Organic photocatalysts offer exciting opportunities for the conversion of solar energy to storable chemical products. Their intricate spatial architecture, tailored with precision, affords a sophisticated level of control over the light absorption characteristics and the efficacious transport of cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2024-08, Vol.14 (15), p.11713-11720
Hauptverfasser: Zhang, Wenjuan, Chen, Lizheng, Du, Juan, Ma, Zhuoyuan, Ba, Kaikai, Chu, Xuefeng, Wang, Chunyu, Xie, Tengfeng, Wang, Dayang, Liu, Gang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11720
container_issue 15
container_start_page 11713
container_title ACS catalysis
container_volume 14
creator Zhang, Wenjuan
Chen, Lizheng
Du, Juan
Ma, Zhuoyuan
Ba, Kaikai
Chu, Xuefeng
Wang, Chunyu
Xie, Tengfeng
Wang, Dayang
Liu, Gang
description Organic photocatalysts offer exciting opportunities for the conversion of solar energy to storable chemical products. Their intricate spatial architecture, tailored with precision, affords a sophisticated level of control over the light absorption characteristics and the efficacious transport of charge carriers. Nonetheless, the state-of-the-art advancements in catalytic performance have predominantly stemmed from the strategic disruption and subsequent reconfiguration of the pre-existing conjugated matrix structures. In this work, we develop a molecular cocatalyst strategy based on our recently reported transient-state self-bipolarized frameworks to improve photocatalytic performance. It was demonstrated that introducing a triazine ring through covalent bonding or mechanic mixing could significantly enhance the performance of photocatalysts without disturbing the original frameworks. Under natural sunlight irradiation and using only water and air as raw materials, the generation rate of H2O2 can be increased by approximately 4.3 times. Comprehensive experimental characterizations, including surface photovoltage and in situ electron paramagnetic resonance, along with theoretical calculations demonstrated the cocatalytic nature of triazine rings. These rings effectively delocalize photoexcited electrons, promoting the reduction of adsorbed O2 and enhancing the production of H2O2. Notably, the strategic incorporation of a triazine ring within the catalyst matrix while leaving the underlying framework intact underscores the potential for this approach to be extrapolated to a broader spectrum of organic photocatalysts. This innovative tactic not only paves the way for enhanced catalytic performance but also exemplifies the versatility and adaptability of molecular design in the field of catalysis.
doi_str_mv 10.1021/acscatal.4c02285
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acscatal_4c02285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h53064497</sourcerecordid><originalsourceid>FETCH-LOGICAL-a122t-8d856f3e9115cd4a60274960b938eabc8c6aaf1afda3049fe078a49efae9469b3</originalsourceid><addsrcrecordid>eNpNkMFKAzEYhIMoWGrvHvMApibZZLs5am2tUKzYel7-ZpNu6pqVJKvYp3fFCs5l5jDMwIfQJaNjRjm7Bh01JGjGQlPOC3mCBpxJSaTI5Om_fI5GMe5pLyHzYkIH6LAJDg7OG_zs_I7MfA1emwpvAvjojE9knSAZvDaNJbfuvW0guENfWIUdeKfxPMCb-WzDa8S2DfgRUhegwevON25XJ3IX3IfxeMFXHD_VbWrjl0-1iS5eoDMLTTSjow_Ry3y2mS7IcnX_ML1ZEmCcJ1JUhcxtZhRjUlcCcsonQuV0q7LCwFYXOgewDGwFGRXKGjopQChjwSiRq202RFe_uz2lct92wfdvJaPlD7ryD115RJd9A9BOZjU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Triazine Ring-Enhanced Transient-State Self-Bipolarized Organic Frameworks for Natural Sunlight-Driven H2O2 Photosynthesis</title><source>ACS Publications</source><creator>Zhang, Wenjuan ; Chen, Lizheng ; Du, Juan ; Ma, Zhuoyuan ; Ba, Kaikai ; Chu, Xuefeng ; Wang, Chunyu ; Xie, Tengfeng ; Wang, Dayang ; Liu, Gang</creator><creatorcontrib>Zhang, Wenjuan ; Chen, Lizheng ; Du, Juan ; Ma, Zhuoyuan ; Ba, Kaikai ; Chu, Xuefeng ; Wang, Chunyu ; Xie, Tengfeng ; Wang, Dayang ; Liu, Gang</creatorcontrib><description>Organic photocatalysts offer exciting opportunities for the conversion of solar energy to storable chemical products. Their intricate spatial architecture, tailored with precision, affords a sophisticated level of control over the light absorption characteristics and the efficacious transport of charge carriers. Nonetheless, the state-of-the-art advancements in catalytic performance have predominantly stemmed from the strategic disruption and subsequent reconfiguration of the pre-existing conjugated matrix structures. In this work, we develop a molecular cocatalyst strategy based on our recently reported transient-state self-bipolarized frameworks to improve photocatalytic performance. It was demonstrated that introducing a triazine ring through covalent bonding or mechanic mixing could significantly enhance the performance of photocatalysts without disturbing the original frameworks. Under natural sunlight irradiation and using only water and air as raw materials, the generation rate of H2O2 can be increased by approximately 4.3 times. Comprehensive experimental characterizations, including surface photovoltage and in situ electron paramagnetic resonance, along with theoretical calculations demonstrated the cocatalytic nature of triazine rings. These rings effectively delocalize photoexcited electrons, promoting the reduction of adsorbed O2 and enhancing the production of H2O2. Notably, the strategic incorporation of a triazine ring within the catalyst matrix while leaving the underlying framework intact underscores the potential for this approach to be extrapolated to a broader spectrum of organic photocatalysts. This innovative tactic not only paves the way for enhanced catalytic performance but also exemplifies the versatility and adaptability of molecular design in the field of catalysis.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.4c02285</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2024-08, Vol.14 (15), p.11713-11720</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3678-6677 ; 0000-0001-9800-0380 ; 0000-0002-7163-8250</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.4c02285$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.4c02285$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Zhang, Wenjuan</creatorcontrib><creatorcontrib>Chen, Lizheng</creatorcontrib><creatorcontrib>Du, Juan</creatorcontrib><creatorcontrib>Ma, Zhuoyuan</creatorcontrib><creatorcontrib>Ba, Kaikai</creatorcontrib><creatorcontrib>Chu, Xuefeng</creatorcontrib><creatorcontrib>Wang, Chunyu</creatorcontrib><creatorcontrib>Xie, Tengfeng</creatorcontrib><creatorcontrib>Wang, Dayang</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><title>Triazine Ring-Enhanced Transient-State Self-Bipolarized Organic Frameworks for Natural Sunlight-Driven H2O2 Photosynthesis</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Organic photocatalysts offer exciting opportunities for the conversion of solar energy to storable chemical products. Their intricate spatial architecture, tailored with precision, affords a sophisticated level of control over the light absorption characteristics and the efficacious transport of charge carriers. Nonetheless, the state-of-the-art advancements in catalytic performance have predominantly stemmed from the strategic disruption and subsequent reconfiguration of the pre-existing conjugated matrix structures. In this work, we develop a molecular cocatalyst strategy based on our recently reported transient-state self-bipolarized frameworks to improve photocatalytic performance. It was demonstrated that introducing a triazine ring through covalent bonding or mechanic mixing could significantly enhance the performance of photocatalysts without disturbing the original frameworks. Under natural sunlight irradiation and using only water and air as raw materials, the generation rate of H2O2 can be increased by approximately 4.3 times. Comprehensive experimental characterizations, including surface photovoltage and in situ electron paramagnetic resonance, along with theoretical calculations demonstrated the cocatalytic nature of triazine rings. These rings effectively delocalize photoexcited electrons, promoting the reduction of adsorbed O2 and enhancing the production of H2O2. Notably, the strategic incorporation of a triazine ring within the catalyst matrix while leaving the underlying framework intact underscores the potential for this approach to be extrapolated to a broader spectrum of organic photocatalysts. This innovative tactic not only paves the way for enhanced catalytic performance but also exemplifies the versatility and adaptability of molecular design in the field of catalysis.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkMFKAzEYhIMoWGrvHvMApibZZLs5am2tUKzYel7-ZpNu6pqVJKvYp3fFCs5l5jDMwIfQJaNjRjm7Bh01JGjGQlPOC3mCBpxJSaTI5Om_fI5GMe5pLyHzYkIH6LAJDg7OG_zs_I7MfA1emwpvAvjojE9knSAZvDaNJbfuvW0guENfWIUdeKfxPMCb-WzDa8S2DfgRUhegwevON25XJ3IX3IfxeMFXHD_VbWrjl0-1iS5eoDMLTTSjow_Ry3y2mS7IcnX_ML1ZEmCcJ1JUhcxtZhRjUlcCcsonQuV0q7LCwFYXOgewDGwFGRXKGjopQChjwSiRq202RFe_uz2lct92wfdvJaPlD7ryD115RJd9A9BOZjU</recordid><startdate>20240802</startdate><enddate>20240802</enddate><creator>Zhang, Wenjuan</creator><creator>Chen, Lizheng</creator><creator>Du, Juan</creator><creator>Ma, Zhuoyuan</creator><creator>Ba, Kaikai</creator><creator>Chu, Xuefeng</creator><creator>Wang, Chunyu</creator><creator>Xie, Tengfeng</creator><creator>Wang, Dayang</creator><creator>Liu, Gang</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-3678-6677</orcidid><orcidid>https://orcid.org/0000-0001-9800-0380</orcidid><orcidid>https://orcid.org/0000-0002-7163-8250</orcidid></search><sort><creationdate>20240802</creationdate><title>Triazine Ring-Enhanced Transient-State Self-Bipolarized Organic Frameworks for Natural Sunlight-Driven H2O2 Photosynthesis</title><author>Zhang, Wenjuan ; Chen, Lizheng ; Du, Juan ; Ma, Zhuoyuan ; Ba, Kaikai ; Chu, Xuefeng ; Wang, Chunyu ; Xie, Tengfeng ; Wang, Dayang ; Liu, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a122t-8d856f3e9115cd4a60274960b938eabc8c6aaf1afda3049fe078a49efae9469b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wenjuan</creatorcontrib><creatorcontrib>Chen, Lizheng</creatorcontrib><creatorcontrib>Du, Juan</creatorcontrib><creatorcontrib>Ma, Zhuoyuan</creatorcontrib><creatorcontrib>Ba, Kaikai</creatorcontrib><creatorcontrib>Chu, Xuefeng</creatorcontrib><creatorcontrib>Wang, Chunyu</creatorcontrib><creatorcontrib>Xie, Tengfeng</creatorcontrib><creatorcontrib>Wang, Dayang</creatorcontrib><creatorcontrib>Liu, Gang</creatorcontrib><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wenjuan</au><au>Chen, Lizheng</au><au>Du, Juan</au><au>Ma, Zhuoyuan</au><au>Ba, Kaikai</au><au>Chu, Xuefeng</au><au>Wang, Chunyu</au><au>Xie, Tengfeng</au><au>Wang, Dayang</au><au>Liu, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triazine Ring-Enhanced Transient-State Self-Bipolarized Organic Frameworks for Natural Sunlight-Driven H2O2 Photosynthesis</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2024-08-02</date><risdate>2024</risdate><volume>14</volume><issue>15</issue><spage>11713</spage><epage>11720</epage><pages>11713-11720</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Organic photocatalysts offer exciting opportunities for the conversion of solar energy to storable chemical products. Their intricate spatial architecture, tailored with precision, affords a sophisticated level of control over the light absorption characteristics and the efficacious transport of charge carriers. Nonetheless, the state-of-the-art advancements in catalytic performance have predominantly stemmed from the strategic disruption and subsequent reconfiguration of the pre-existing conjugated matrix structures. In this work, we develop a molecular cocatalyst strategy based on our recently reported transient-state self-bipolarized frameworks to improve photocatalytic performance. It was demonstrated that introducing a triazine ring through covalent bonding or mechanic mixing could significantly enhance the performance of photocatalysts without disturbing the original frameworks. Under natural sunlight irradiation and using only water and air as raw materials, the generation rate of H2O2 can be increased by approximately 4.3 times. Comprehensive experimental characterizations, including surface photovoltage and in situ electron paramagnetic resonance, along with theoretical calculations demonstrated the cocatalytic nature of triazine rings. These rings effectively delocalize photoexcited electrons, promoting the reduction of adsorbed O2 and enhancing the production of H2O2. Notably, the strategic incorporation of a triazine ring within the catalyst matrix while leaving the underlying framework intact underscores the potential for this approach to be extrapolated to a broader spectrum of organic photocatalysts. This innovative tactic not only paves the way for enhanced catalytic performance but also exemplifies the versatility and adaptability of molecular design in the field of catalysis.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.4c02285</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3678-6677</orcidid><orcidid>https://orcid.org/0000-0001-9800-0380</orcidid><orcidid>https://orcid.org/0000-0002-7163-8250</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2024-08, Vol.14 (15), p.11713-11720
issn 2155-5435
2155-5435
language eng
recordid cdi_acs_journals_10_1021_acscatal_4c02285
source ACS Publications
title Triazine Ring-Enhanced Transient-State Self-Bipolarized Organic Frameworks for Natural Sunlight-Driven H2O2 Photosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T02%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triazine%20Ring-Enhanced%20Transient-State%20Self-Bipolarized%20Organic%20Frameworks%20for%20Natural%20Sunlight-Driven%20H2O2%20Photosynthesis&rft.jtitle=ACS%20catalysis&rft.au=Zhang,%20Wenjuan&rft.date=2024-08-02&rft.volume=14&rft.issue=15&rft.spage=11713&rft.epage=11720&rft.pages=11713-11720&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.4c02285&rft_dat=%3Cacs%3Eh53064497%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true