Investigation of Zn-Substituted FeCo2O4 for the Oxygen Evolution Reaction and Reaction Mechanism Monitoring through In Situ Near-Ambient-Pressure X‑ray Photoelectron Spectroscopy

Zn-substituted iron cobaltite spinel (Zn x Fe1–x Co2O4, 0 < x < 0.6 in intervals of 0.2) on nickel foam (NF) is synthesized through a hydrothermal process, and carbon nanotubes (CNTs) are embedded in NF to provide additional conductivity and nucleation sites for the catalyst. Zn ions are used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2023-10, Vol.13 (20), p.13434-13445
Hauptverfasser: Patta, Pongsatorn, Chen, Ya-Yu, Natesan, Manjula, Sung, Chien-Lin, Yang, Chueh-Cheng, Wang, Chia-Hsin, Fujigaya, Tsuyohiko, Chang, Yu-Hsu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13445
container_issue 20
container_start_page 13434
container_title ACS catalysis
container_volume 13
creator Patta, Pongsatorn
Chen, Ya-Yu
Natesan, Manjula
Sung, Chien-Lin
Yang, Chueh-Cheng
Wang, Chia-Hsin
Fujigaya, Tsuyohiko
Chang, Yu-Hsu
description Zn-substituted iron cobaltite spinel (Zn x Fe1–x Co2O4, 0 < x < 0.6 in intervals of 0.2) on nickel foam (NF) is synthesized through a hydrothermal process, and carbon nanotubes (CNTs) are embedded in NF to provide additional conductivity and nucleation sites for the catalyst. Zn ions are used as a substitute for Fe in FeCo2O4 to increase the material’s electrochemical surface area and provide more active sites for electron transport at the electrode–electrolyte interface. Sufficient Zn substitution greatly promotes oxygen evolution reaction (OER) activity, and Zn0.4Fe0.6Co2O4/NF is discovered to exhibit the highest OER performance, reaching an overvoltage of 330 mV at a current density of 50 mA cm2 in 1 M NaOH. Zn0.4Fe0.6Co2O4/CNT/NF has a charge transfer resistance of 2.549 Ω and an active surface area of 526 cm2. In situ near-ambient-pressure X-ray photoelectron spectroscopy directly confirms the variation of the electrode surface composition during OER and shows that the highest percentage of CoO2 (about 51%) grows on the catalyst surface, resulting in increased surface oxygen adsorption. We identify Co­(IV) as an intermediate in the OER adsorption, forming a superoxide species that is the key intermediate in oxygen gas generation.
doi_str_mv 10.1021/acscatal.3c02326
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acscatal_3c02326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c962510133</sourcerecordid><originalsourceid>FETCH-LOGICAL-a192t-6ac2eb0b4582adfea48d77d12ab8b1646955a9f0c041d8fc04fa19c8e935327e3</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhQdRsGj3LvMATk0yk_lZltJqobXFKoibIZO581OmSUkyxe58Bd_FJ_JJjLWid3POvXDOhc_zrggeEEzJDRdGcMvbQSAwDWh04vUoYcxnYcBO__lzr2_MGrsJWZTEuOd9TOUOjG0qbhslkSrRi_RXXe5OtrNQoAmMFF2EqFQa2RrQ4nVfgUTjnWq7Q-QBuDgYLou_ZQ6i5rIxGzRXsrFKN7Jyea26qkZTiVauHt0D1_5wkzcgrb_UYEynAT1_vr1rvkfLWlkFLQirXeFqezBGqO3-0jsreWugf9QL72kyfhzd-bPF7XQ0nPmcpNT6ERcUcpyHLKG8KIGHSRHHBaE8T3IShVHKGE9LLHBIiqR0UrqgSCANWEBjCC68659exzdbq05L9y0jOPuGnv1Cz47Qgy8_Z3yn</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Investigation of Zn-Substituted FeCo2O4 for the Oxygen Evolution Reaction and Reaction Mechanism Monitoring through In Situ Near-Ambient-Pressure X‑ray Photoelectron Spectroscopy</title><source>ACS Publications</source><creator>Patta, Pongsatorn ; Chen, Ya-Yu ; Natesan, Manjula ; Sung, Chien-Lin ; Yang, Chueh-Cheng ; Wang, Chia-Hsin ; Fujigaya, Tsuyohiko ; Chang, Yu-Hsu</creator><creatorcontrib>Patta, Pongsatorn ; Chen, Ya-Yu ; Natesan, Manjula ; Sung, Chien-Lin ; Yang, Chueh-Cheng ; Wang, Chia-Hsin ; Fujigaya, Tsuyohiko ; Chang, Yu-Hsu</creatorcontrib><description>Zn-substituted iron cobaltite spinel (Zn x Fe1–x Co2O4, 0 &lt; x &lt; 0.6 in intervals of 0.2) on nickel foam (NF) is synthesized through a hydrothermal process, and carbon nanotubes (CNTs) are embedded in NF to provide additional conductivity and nucleation sites for the catalyst. Zn ions are used as a substitute for Fe in FeCo2O4 to increase the material’s electrochemical surface area and provide more active sites for electron transport at the electrode–electrolyte interface. Sufficient Zn substitution greatly promotes oxygen evolution reaction (OER) activity, and Zn0.4Fe0.6Co2O4/NF is discovered to exhibit the highest OER performance, reaching an overvoltage of 330 mV at a current density of 50 mA cm2 in 1 M NaOH. Zn0.4Fe0.6Co2O4/CNT/NF has a charge transfer resistance of 2.549 Ω and an active surface area of 526 cm2. In situ near-ambient-pressure X-ray photoelectron spectroscopy directly confirms the variation of the electrode surface composition during OER and shows that the highest percentage of CoO2 (about 51%) grows on the catalyst surface, resulting in increased surface oxygen adsorption. We identify Co­(IV) as an intermediate in the OER adsorption, forming a superoxide species that is the key intermediate in oxygen gas generation.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.3c02326</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2023-10, Vol.13 (20), p.13434-13445</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0734-1786 ; 0000-0003-2813-6383 ; 0000-0003-3563-8234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.3c02326$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.3c02326$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,27059,27907,27908,56721,56771</link.rule.ids></links><search><creatorcontrib>Patta, Pongsatorn</creatorcontrib><creatorcontrib>Chen, Ya-Yu</creatorcontrib><creatorcontrib>Natesan, Manjula</creatorcontrib><creatorcontrib>Sung, Chien-Lin</creatorcontrib><creatorcontrib>Yang, Chueh-Cheng</creatorcontrib><creatorcontrib>Wang, Chia-Hsin</creatorcontrib><creatorcontrib>Fujigaya, Tsuyohiko</creatorcontrib><creatorcontrib>Chang, Yu-Hsu</creatorcontrib><title>Investigation of Zn-Substituted FeCo2O4 for the Oxygen Evolution Reaction and Reaction Mechanism Monitoring through In Situ Near-Ambient-Pressure X‑ray Photoelectron Spectroscopy</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>Zn-substituted iron cobaltite spinel (Zn x Fe1–x Co2O4, 0 &lt; x &lt; 0.6 in intervals of 0.2) on nickel foam (NF) is synthesized through a hydrothermal process, and carbon nanotubes (CNTs) are embedded in NF to provide additional conductivity and nucleation sites for the catalyst. Zn ions are used as a substitute for Fe in FeCo2O4 to increase the material’s electrochemical surface area and provide more active sites for electron transport at the electrode–electrolyte interface. Sufficient Zn substitution greatly promotes oxygen evolution reaction (OER) activity, and Zn0.4Fe0.6Co2O4/NF is discovered to exhibit the highest OER performance, reaching an overvoltage of 330 mV at a current density of 50 mA cm2 in 1 M NaOH. Zn0.4Fe0.6Co2O4/CNT/NF has a charge transfer resistance of 2.549 Ω and an active surface area of 526 cm2. In situ near-ambient-pressure X-ray photoelectron spectroscopy directly confirms the variation of the electrode surface composition during OER and shows that the highest percentage of CoO2 (about 51%) grows on the catalyst surface, resulting in increased surface oxygen adsorption. We identify Co­(IV) as an intermediate in the OER adsorption, forming a superoxide species that is the key intermediate in oxygen gas generation.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkM1KAzEUhQdRsGj3LvMATk0yk_lZltJqobXFKoibIZO581OmSUkyxe58Bd_FJ_JJjLWid3POvXDOhc_zrggeEEzJDRdGcMvbQSAwDWh04vUoYcxnYcBO__lzr2_MGrsJWZTEuOd9TOUOjG0qbhslkSrRi_RXXe5OtrNQoAmMFF2EqFQa2RrQ4nVfgUTjnWq7Q-QBuDgYLou_ZQ6i5rIxGzRXsrFKN7Jyea26qkZTiVauHt0D1_5wkzcgrb_UYEynAT1_vr1rvkfLWlkFLQirXeFqezBGqO3-0jsreWugf9QL72kyfhzd-bPF7XQ0nPmcpNT6ERcUcpyHLKG8KIGHSRHHBaE8T3IShVHKGE9LLHBIiqR0UrqgSCANWEBjCC68659exzdbq05L9y0jOPuGnv1Cz47Qgy8_Z3yn</recordid><startdate>20231020</startdate><enddate>20231020</enddate><creator>Patta, Pongsatorn</creator><creator>Chen, Ya-Yu</creator><creator>Natesan, Manjula</creator><creator>Sung, Chien-Lin</creator><creator>Yang, Chueh-Cheng</creator><creator>Wang, Chia-Hsin</creator><creator>Fujigaya, Tsuyohiko</creator><creator>Chang, Yu-Hsu</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-0734-1786</orcidid><orcidid>https://orcid.org/0000-0003-2813-6383</orcidid><orcidid>https://orcid.org/0000-0003-3563-8234</orcidid></search><sort><creationdate>20231020</creationdate><title>Investigation of Zn-Substituted FeCo2O4 for the Oxygen Evolution Reaction and Reaction Mechanism Monitoring through In Situ Near-Ambient-Pressure X‑ray Photoelectron Spectroscopy</title><author>Patta, Pongsatorn ; Chen, Ya-Yu ; Natesan, Manjula ; Sung, Chien-Lin ; Yang, Chueh-Cheng ; Wang, Chia-Hsin ; Fujigaya, Tsuyohiko ; Chang, Yu-Hsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a192t-6ac2eb0b4582adfea48d77d12ab8b1646955a9f0c041d8fc04fa19c8e935327e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patta, Pongsatorn</creatorcontrib><creatorcontrib>Chen, Ya-Yu</creatorcontrib><creatorcontrib>Natesan, Manjula</creatorcontrib><creatorcontrib>Sung, Chien-Lin</creatorcontrib><creatorcontrib>Yang, Chueh-Cheng</creatorcontrib><creatorcontrib>Wang, Chia-Hsin</creatorcontrib><creatorcontrib>Fujigaya, Tsuyohiko</creatorcontrib><creatorcontrib>Chang, Yu-Hsu</creatorcontrib><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patta, Pongsatorn</au><au>Chen, Ya-Yu</au><au>Natesan, Manjula</au><au>Sung, Chien-Lin</au><au>Yang, Chueh-Cheng</au><au>Wang, Chia-Hsin</au><au>Fujigaya, Tsuyohiko</au><au>Chang, Yu-Hsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Zn-Substituted FeCo2O4 for the Oxygen Evolution Reaction and Reaction Mechanism Monitoring through In Situ Near-Ambient-Pressure X‑ray Photoelectron Spectroscopy</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2023-10-20</date><risdate>2023</risdate><volume>13</volume><issue>20</issue><spage>13434</spage><epage>13445</epage><pages>13434-13445</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>Zn-substituted iron cobaltite spinel (Zn x Fe1–x Co2O4, 0 &lt; x &lt; 0.6 in intervals of 0.2) on nickel foam (NF) is synthesized through a hydrothermal process, and carbon nanotubes (CNTs) are embedded in NF to provide additional conductivity and nucleation sites for the catalyst. Zn ions are used as a substitute for Fe in FeCo2O4 to increase the material’s electrochemical surface area and provide more active sites for electron transport at the electrode–electrolyte interface. Sufficient Zn substitution greatly promotes oxygen evolution reaction (OER) activity, and Zn0.4Fe0.6Co2O4/NF is discovered to exhibit the highest OER performance, reaching an overvoltage of 330 mV at a current density of 50 mA cm2 in 1 M NaOH. Zn0.4Fe0.6Co2O4/CNT/NF has a charge transfer resistance of 2.549 Ω and an active surface area of 526 cm2. In situ near-ambient-pressure X-ray photoelectron spectroscopy directly confirms the variation of the electrode surface composition during OER and shows that the highest percentage of CoO2 (about 51%) grows on the catalyst surface, resulting in increased surface oxygen adsorption. We identify Co­(IV) as an intermediate in the OER adsorption, forming a superoxide species that is the key intermediate in oxygen gas generation.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.3c02326</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0734-1786</orcidid><orcidid>https://orcid.org/0000-0003-2813-6383</orcidid><orcidid>https://orcid.org/0000-0003-3563-8234</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2023-10, Vol.13 (20), p.13434-13445
issn 2155-5435
2155-5435
language eng
recordid cdi_acs_journals_10_1021_acscatal_3c02326
source ACS Publications
title Investigation of Zn-Substituted FeCo2O4 for the Oxygen Evolution Reaction and Reaction Mechanism Monitoring through In Situ Near-Ambient-Pressure X‑ray Photoelectron Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A04%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Zn-Substituted%20FeCo2O4%20for%20the%20Oxygen%20Evolution%20Reaction%20and%20Reaction%20Mechanism%20Monitoring%20through%20In%20Situ%20Near-Ambient-Pressure%20X%E2%80%91ray%20Photoelectron%20Spectroscopy&rft.jtitle=ACS%20catalysis&rft.au=Patta,%20Pongsatorn&rft.date=2023-10-20&rft.volume=13&rft.issue=20&rft.spage=13434&rft.epage=13445&rft.pages=13434-13445&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.3c02326&rft_dat=%3Cacs%3Ec962510133%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true