OH-enriched NiS/Ni3S2–Zr Heterostructure for Overall Water Splitting Performance in Alkaline Media
The development of highly efficient Ni-sulfide-based catalysts is desirable but limited due to slow kinetics in alkaline hydrogen evolution reactions (HER) and water electrolysis. Herein, we report the design of a high-valent doping strategy combined with selective surface etching to generate an OH-...
Gespeichert in:
Veröffentlicht in: | ACS applied nano materials 2024-05, Vol.7 (10), p.11931-11941 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11941 |
---|---|
container_issue | 10 |
container_start_page | 11931 |
container_title | ACS applied nano materials |
container_volume | 7 |
creator | Sathya Sai, K. Naga Darsan, Ardra S. Wang, Kehan Pandikumar, Alagarsamy Venkatakrishnan, Shankar Muthukonda Hong, Zhanglian |
description | The development of highly efficient Ni-sulfide-based catalysts is desirable but limited due to slow kinetics in alkaline hydrogen evolution reactions (HER) and water electrolysis. Herein, we report the design of a high-valent doping strategy combined with selective surface etching to generate an OH-enriched porous heterostructure NiS/Ni3S2 nanosphere with an optimal electronic structure. The E-NiS/Ni3S2–Zr(6 mM) electrocatalyst requires only 50 mV to achieve 10 mA cm–2 for the HER. Oxygen evolution reaction (OER) requires 205 and 282 mV to reach 10 and 100 mA cm–2, respectively. In addition, for total water splitting in alkaline medium, the assembled cell with E-NiS/Ni3S2–Zr(6 mM) as both the positive and negative electrodes requires ultralow voltages of 1.41 and 1.51 V at 10 mA and 20 mA cm–2 current densities, respectively. Notably, E-NiS/Ni3S2–Zr(6 mM) showed excellent stability for 30 h in HER, OER, and water electrolysis. Delving into the underlying electrochemical processes and electron transfer kinetics, a diverse array of techniques such as linear sweep voltammogram, electrochemical impedance spectroscopy, electrochemical active surface area, C dl, cyclic voltammetry, chronoamperometric, and turn over frequency were employed. Comprehensive characterization encompassing X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared, Raman, scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy was conducted to explore the electronic and morphological attributes of the synthesized materials. The approach formulated in this study paves the way for achieving optimal electrocatalyst performance, positioning them as compelling alternatives to noble metal-based electrocatalysts. |
doi_str_mv | 10.1021/acsanm.4c01502 |
format | Article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsanm_4c01502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a496281791</sourcerecordid><originalsourceid>FETCH-LOGICAL-a190t-139ffe6e965a39871385f7bca7b5af29d71501e32317a210438f3948a537266e3</originalsourceid><addsrcrecordid>eNpNkEFLw0AUhBdRsNRePe9ZSPt2N8lmj6WoEWorVBG8hNfkrW5NN7JJPPsf_If-EiPtwdMMDMwwH2OXAqYCpJhh2aLfT-MSRALyhI1kouMIjIbTf_6cTdp2BwDCiFQBjFi1ziPywZVvVPGV28xWTm3kz9f3S-A5dRSatgt92fWBuG0CX39SwLrmzzhkfPNRu65z_pU_UBjiPfqSuPN8Xr9j7Tzxe6ocXrAzi3VLk6OO2dPN9eMij5br27vFfBmhMNBFQhlrKSWTJqhMpoXKEqu3JeptglaaSg_fBCmphEYpIFaZVSbOMFFapimpMbs69A40il3TBz-sFQKKP0TFAVFxRKR-ARpoWrg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>OH-enriched NiS/Ni3S2–Zr Heterostructure for Overall Water Splitting Performance in Alkaline Media</title><source>American Chemical Society (ACS) Journals</source><creator>Sathya Sai, K. Naga ; Darsan, Ardra S. ; Wang, Kehan ; Pandikumar, Alagarsamy ; Venkatakrishnan, Shankar Muthukonda ; Hong, Zhanglian</creator><creatorcontrib>Sathya Sai, K. Naga ; Darsan, Ardra S. ; Wang, Kehan ; Pandikumar, Alagarsamy ; Venkatakrishnan, Shankar Muthukonda ; Hong, Zhanglian</creatorcontrib><description>The development of highly efficient Ni-sulfide-based catalysts is desirable but limited due to slow kinetics in alkaline hydrogen evolution reactions (HER) and water electrolysis. Herein, we report the design of a high-valent doping strategy combined with selective surface etching to generate an OH-enriched porous heterostructure NiS/Ni3S2 nanosphere with an optimal electronic structure. The E-NiS/Ni3S2–Zr(6 mM) electrocatalyst requires only 50 mV to achieve 10 mA cm–2 for the HER. Oxygen evolution reaction (OER) requires 205 and 282 mV to reach 10 and 100 mA cm–2, respectively. In addition, for total water splitting in alkaline medium, the assembled cell with E-NiS/Ni3S2–Zr(6 mM) as both the positive and negative electrodes requires ultralow voltages of 1.41 and 1.51 V at 10 mA and 20 mA cm–2 current densities, respectively. Notably, E-NiS/Ni3S2–Zr(6 mM) showed excellent stability for 30 h in HER, OER, and water electrolysis. Delving into the underlying electrochemical processes and electron transfer kinetics, a diverse array of techniques such as linear sweep voltammogram, electrochemical impedance spectroscopy, electrochemical active surface area, C dl, cyclic voltammetry, chronoamperometric, and turn over frequency were employed. Comprehensive characterization encompassing X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared, Raman, scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy was conducted to explore the electronic and morphological attributes of the synthesized materials. The approach formulated in this study paves the way for achieving optimal electrocatalyst performance, positioning them as compelling alternatives to noble metal-based electrocatalysts.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.4c01502</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2024-05, Vol.7 (10), p.11931-11941</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8804-5195 ; 0000-0001-9940-5128 ; 0000-0001-8163-642X ; 0009-0007-3969-3771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.4c01502$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.4c01502$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Sathya Sai, K. Naga</creatorcontrib><creatorcontrib>Darsan, Ardra S.</creatorcontrib><creatorcontrib>Wang, Kehan</creatorcontrib><creatorcontrib>Pandikumar, Alagarsamy</creatorcontrib><creatorcontrib>Venkatakrishnan, Shankar Muthukonda</creatorcontrib><creatorcontrib>Hong, Zhanglian</creatorcontrib><title>OH-enriched NiS/Ni3S2–Zr Heterostructure for Overall Water Splitting Performance in Alkaline Media</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>The development of highly efficient Ni-sulfide-based catalysts is desirable but limited due to slow kinetics in alkaline hydrogen evolution reactions (HER) and water electrolysis. Herein, we report the design of a high-valent doping strategy combined with selective surface etching to generate an OH-enriched porous heterostructure NiS/Ni3S2 nanosphere with an optimal electronic structure. The E-NiS/Ni3S2–Zr(6 mM) electrocatalyst requires only 50 mV to achieve 10 mA cm–2 for the HER. Oxygen evolution reaction (OER) requires 205 and 282 mV to reach 10 and 100 mA cm–2, respectively. In addition, for total water splitting in alkaline medium, the assembled cell with E-NiS/Ni3S2–Zr(6 mM) as both the positive and negative electrodes requires ultralow voltages of 1.41 and 1.51 V at 10 mA and 20 mA cm–2 current densities, respectively. Notably, E-NiS/Ni3S2–Zr(6 mM) showed excellent stability for 30 h in HER, OER, and water electrolysis. Delving into the underlying electrochemical processes and electron transfer kinetics, a diverse array of techniques such as linear sweep voltammogram, electrochemical impedance spectroscopy, electrochemical active surface area, C dl, cyclic voltammetry, chronoamperometric, and turn over frequency were employed. Comprehensive characterization encompassing X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared, Raman, scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy was conducted to explore the electronic and morphological attributes of the synthesized materials. The approach formulated in this study paves the way for achieving optimal electrocatalyst performance, positioning them as compelling alternatives to noble metal-based electrocatalysts.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkEFLw0AUhBdRsNRePe9ZSPt2N8lmj6WoEWorVBG8hNfkrW5NN7JJPPsf_If-EiPtwdMMDMwwH2OXAqYCpJhh2aLfT-MSRALyhI1kouMIjIbTf_6cTdp2BwDCiFQBjFi1ziPywZVvVPGV28xWTm3kz9f3S-A5dRSatgt92fWBuG0CX39SwLrmzzhkfPNRu65z_pU_UBjiPfqSuPN8Xr9j7Tzxe6ocXrAzi3VLk6OO2dPN9eMij5br27vFfBmhMNBFQhlrKSWTJqhMpoXKEqu3JeptglaaSg_fBCmphEYpIFaZVSbOMFFapimpMbs69A40il3TBz-sFQKKP0TFAVFxRKR-ARpoWrg</recordid><startdate>20240524</startdate><enddate>20240524</enddate><creator>Sathya Sai, K. Naga</creator><creator>Darsan, Ardra S.</creator><creator>Wang, Kehan</creator><creator>Pandikumar, Alagarsamy</creator><creator>Venkatakrishnan, Shankar Muthukonda</creator><creator>Hong, Zhanglian</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-8804-5195</orcidid><orcidid>https://orcid.org/0000-0001-9940-5128</orcidid><orcidid>https://orcid.org/0000-0001-8163-642X</orcidid><orcidid>https://orcid.org/0009-0007-3969-3771</orcidid></search><sort><creationdate>20240524</creationdate><title>OH-enriched NiS/Ni3S2–Zr Heterostructure for Overall Water Splitting Performance in Alkaline Media</title><author>Sathya Sai, K. Naga ; Darsan, Ardra S. ; Wang, Kehan ; Pandikumar, Alagarsamy ; Venkatakrishnan, Shankar Muthukonda ; Hong, Zhanglian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a190t-139ffe6e965a39871385f7bca7b5af29d71501e32317a210438f3948a537266e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sathya Sai, K. Naga</creatorcontrib><creatorcontrib>Darsan, Ardra S.</creatorcontrib><creatorcontrib>Wang, Kehan</creatorcontrib><creatorcontrib>Pandikumar, Alagarsamy</creatorcontrib><creatorcontrib>Venkatakrishnan, Shankar Muthukonda</creatorcontrib><creatorcontrib>Hong, Zhanglian</creatorcontrib><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sathya Sai, K. Naga</au><au>Darsan, Ardra S.</au><au>Wang, Kehan</au><au>Pandikumar, Alagarsamy</au><au>Venkatakrishnan, Shankar Muthukonda</au><au>Hong, Zhanglian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OH-enriched NiS/Ni3S2–Zr Heterostructure for Overall Water Splitting Performance in Alkaline Media</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2024-05-24</date><risdate>2024</risdate><volume>7</volume><issue>10</issue><spage>11931</spage><epage>11941</epage><pages>11931-11941</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>The development of highly efficient Ni-sulfide-based catalysts is desirable but limited due to slow kinetics in alkaline hydrogen evolution reactions (HER) and water electrolysis. Herein, we report the design of a high-valent doping strategy combined with selective surface etching to generate an OH-enriched porous heterostructure NiS/Ni3S2 nanosphere with an optimal electronic structure. The E-NiS/Ni3S2–Zr(6 mM) electrocatalyst requires only 50 mV to achieve 10 mA cm–2 for the HER. Oxygen evolution reaction (OER) requires 205 and 282 mV to reach 10 and 100 mA cm–2, respectively. In addition, for total water splitting in alkaline medium, the assembled cell with E-NiS/Ni3S2–Zr(6 mM) as both the positive and negative electrodes requires ultralow voltages of 1.41 and 1.51 V at 10 mA and 20 mA cm–2 current densities, respectively. Notably, E-NiS/Ni3S2–Zr(6 mM) showed excellent stability for 30 h in HER, OER, and water electrolysis. Delving into the underlying electrochemical processes and electron transfer kinetics, a diverse array of techniques such as linear sweep voltammogram, electrochemical impedance spectroscopy, electrochemical active surface area, C dl, cyclic voltammetry, chronoamperometric, and turn over frequency were employed. Comprehensive characterization encompassing X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared, Raman, scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy was conducted to explore the electronic and morphological attributes of the synthesized materials. The approach formulated in this study paves the way for achieving optimal electrocatalyst performance, positioning them as compelling alternatives to noble metal-based electrocatalysts.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.4c01502</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8804-5195</orcidid><orcidid>https://orcid.org/0000-0001-9940-5128</orcidid><orcidid>https://orcid.org/0000-0001-8163-642X</orcidid><orcidid>https://orcid.org/0009-0007-3969-3771</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0970 |
ispartof | ACS applied nano materials, 2024-05, Vol.7 (10), p.11931-11941 |
issn | 2574-0970 2574-0970 |
language | eng |
recordid | cdi_acs_journals_10_1021_acsanm_4c01502 |
source | American Chemical Society (ACS) Journals |
title | OH-enriched NiS/Ni3S2–Zr Heterostructure for Overall Water Splitting Performance in Alkaline Media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OH-enriched%20NiS/Ni3S2%E2%80%93Zr%20Heterostructure%20for%20Overall%20Water%20Splitting%20Performance%20in%20Alkaline%20Media&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Sathya%20Sai,%20K.%20Naga&rft.date=2024-05-24&rft.volume=7&rft.issue=10&rft.spage=11931&rft.epage=11941&rft.pages=11931-11941&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.4c01502&rft_dat=%3Cacs%3Ea496281791%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |