OH-enriched NiS/Ni3S2–Zr Heterostructure for Overall Water Splitting Performance in Alkaline Media

The development of highly efficient Ni-sulfide-based catalysts is desirable but limited due to slow kinetics in alkaline hydrogen evolution reactions (HER) and water electrolysis. Herein, we report the design of a high-valent doping strategy combined with selective surface etching to generate an OH-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2024-05, Vol.7 (10), p.11931-11941
Hauptverfasser: Sathya Sai, K. Naga, Darsan, Ardra S., Wang, Kehan, Pandikumar, Alagarsamy, Venkatakrishnan, Shankar Muthukonda, Hong, Zhanglian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11941
container_issue 10
container_start_page 11931
container_title ACS applied nano materials
container_volume 7
creator Sathya Sai, K. Naga
Darsan, Ardra S.
Wang, Kehan
Pandikumar, Alagarsamy
Venkatakrishnan, Shankar Muthukonda
Hong, Zhanglian
description The development of highly efficient Ni-sulfide-based catalysts is desirable but limited due to slow kinetics in alkaline hydrogen evolution reactions (HER) and water electrolysis. Herein, we report the design of a high-valent doping strategy combined with selective surface etching to generate an OH-enriched porous heterostructure NiS/Ni3S2 nanosphere with an optimal electronic structure. The E-NiS/Ni3S2–Zr(6 mM) electrocatalyst requires only 50 mV to achieve 10 mA cm–2 for the HER. Oxygen evolution reaction (OER) requires 205 and 282 mV to reach 10 and 100 mA cm–2, respectively. In addition, for total water splitting in alkaline medium, the assembled cell with E-NiS/Ni3S2–Zr(6 mM) as both the positive and negative electrodes requires ultralow voltages of 1.41 and 1.51 V at 10 mA and 20 mA cm–2 current densities, respectively. Notably, E-NiS/Ni3S2–Zr(6 mM) showed excellent stability for 30 h in HER, OER, and water electrolysis. Delving into the underlying electrochemical processes and electron transfer kinetics, a diverse array of techniques such as linear sweep voltammogram, electrochemical impedance spectroscopy, electrochemical active surface area, C dl, cyclic voltammetry, chronoamperometric, and turn over frequency were employed. Comprehensive characterization encompassing X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared, Raman, scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy was conducted to explore the electronic and morphological attributes of the synthesized materials. The approach formulated in this study paves the way for achieving optimal electrocatalyst performance, positioning them as compelling alternatives to noble metal-based electrocatalysts.
doi_str_mv 10.1021/acsanm.4c01502
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsanm_4c01502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a496281791</sourcerecordid><originalsourceid>FETCH-LOGICAL-a190t-139ffe6e965a39871385f7bca7b5af29d71501e32317a210438f3948a537266e3</originalsourceid><addsrcrecordid>eNpNkEFLw0AUhBdRsNRePe9ZSPt2N8lmj6WoEWorVBG8hNfkrW5NN7JJPPsf_If-EiPtwdMMDMwwH2OXAqYCpJhh2aLfT-MSRALyhI1kouMIjIbTf_6cTdp2BwDCiFQBjFi1ziPywZVvVPGV28xWTm3kz9f3S-A5dRSatgt92fWBuG0CX39SwLrmzzhkfPNRu65z_pU_UBjiPfqSuPN8Xr9j7Tzxe6ocXrAzi3VLk6OO2dPN9eMij5br27vFfBmhMNBFQhlrKSWTJqhMpoXKEqu3JeptglaaSg_fBCmphEYpIFaZVSbOMFFapimpMbs69A40il3TBz-sFQKKP0TFAVFxRKR-ARpoWrg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>OH-enriched NiS/Ni3S2–Zr Heterostructure for Overall Water Splitting Performance in Alkaline Media</title><source>American Chemical Society (ACS) Journals</source><creator>Sathya Sai, K. Naga ; Darsan, Ardra S. ; Wang, Kehan ; Pandikumar, Alagarsamy ; Venkatakrishnan, Shankar Muthukonda ; Hong, Zhanglian</creator><creatorcontrib>Sathya Sai, K. Naga ; Darsan, Ardra S. ; Wang, Kehan ; Pandikumar, Alagarsamy ; Venkatakrishnan, Shankar Muthukonda ; Hong, Zhanglian</creatorcontrib><description>The development of highly efficient Ni-sulfide-based catalysts is desirable but limited due to slow kinetics in alkaline hydrogen evolution reactions (HER) and water electrolysis. Herein, we report the design of a high-valent doping strategy combined with selective surface etching to generate an OH-enriched porous heterostructure NiS/Ni3S2 nanosphere with an optimal electronic structure. The E-NiS/Ni3S2–Zr(6 mM) electrocatalyst requires only 50 mV to achieve 10 mA cm–2 for the HER. Oxygen evolution reaction (OER) requires 205 and 282 mV to reach 10 and 100 mA cm–2, respectively. In addition, for total water splitting in alkaline medium, the assembled cell with E-NiS/Ni3S2–Zr(6 mM) as both the positive and negative electrodes requires ultralow voltages of 1.41 and 1.51 V at 10 mA and 20 mA cm–2 current densities, respectively. Notably, E-NiS/Ni3S2–Zr(6 mM) showed excellent stability for 30 h in HER, OER, and water electrolysis. Delving into the underlying electrochemical processes and electron transfer kinetics, a diverse array of techniques such as linear sweep voltammogram, electrochemical impedance spectroscopy, electrochemical active surface area, C dl, cyclic voltammetry, chronoamperometric, and turn over frequency were employed. Comprehensive characterization encompassing X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared, Raman, scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy was conducted to explore the electronic and morphological attributes of the synthesized materials. The approach formulated in this study paves the way for achieving optimal electrocatalyst performance, positioning them as compelling alternatives to noble metal-based electrocatalysts.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.4c01502</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2024-05, Vol.7 (10), p.11931-11941</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8804-5195 ; 0000-0001-9940-5128 ; 0000-0001-8163-642X ; 0009-0007-3969-3771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.4c01502$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.4c01502$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Sathya Sai, K. Naga</creatorcontrib><creatorcontrib>Darsan, Ardra S.</creatorcontrib><creatorcontrib>Wang, Kehan</creatorcontrib><creatorcontrib>Pandikumar, Alagarsamy</creatorcontrib><creatorcontrib>Venkatakrishnan, Shankar Muthukonda</creatorcontrib><creatorcontrib>Hong, Zhanglian</creatorcontrib><title>OH-enriched NiS/Ni3S2–Zr Heterostructure for Overall Water Splitting Performance in Alkaline Media</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>The development of highly efficient Ni-sulfide-based catalysts is desirable but limited due to slow kinetics in alkaline hydrogen evolution reactions (HER) and water electrolysis. Herein, we report the design of a high-valent doping strategy combined with selective surface etching to generate an OH-enriched porous heterostructure NiS/Ni3S2 nanosphere with an optimal electronic structure. The E-NiS/Ni3S2–Zr(6 mM) electrocatalyst requires only 50 mV to achieve 10 mA cm–2 for the HER. Oxygen evolution reaction (OER) requires 205 and 282 mV to reach 10 and 100 mA cm–2, respectively. In addition, for total water splitting in alkaline medium, the assembled cell with E-NiS/Ni3S2–Zr(6 mM) as both the positive and negative electrodes requires ultralow voltages of 1.41 and 1.51 V at 10 mA and 20 mA cm–2 current densities, respectively. Notably, E-NiS/Ni3S2–Zr(6 mM) showed excellent stability for 30 h in HER, OER, and water electrolysis. Delving into the underlying electrochemical processes and electron transfer kinetics, a diverse array of techniques such as linear sweep voltammogram, electrochemical impedance spectroscopy, electrochemical active surface area, C dl, cyclic voltammetry, chronoamperometric, and turn over frequency were employed. Comprehensive characterization encompassing X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared, Raman, scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy was conducted to explore the electronic and morphological attributes of the synthesized materials. The approach formulated in this study paves the way for achieving optimal electrocatalyst performance, positioning them as compelling alternatives to noble metal-based electrocatalysts.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkEFLw0AUhBdRsNRePe9ZSPt2N8lmj6WoEWorVBG8hNfkrW5NN7JJPPsf_If-EiPtwdMMDMwwH2OXAqYCpJhh2aLfT-MSRALyhI1kouMIjIbTf_6cTdp2BwDCiFQBjFi1ziPywZVvVPGV28xWTm3kz9f3S-A5dRSatgt92fWBuG0CX39SwLrmzzhkfPNRu65z_pU_UBjiPfqSuPN8Xr9j7Tzxe6ocXrAzi3VLk6OO2dPN9eMij5br27vFfBmhMNBFQhlrKSWTJqhMpoXKEqu3JeptglaaSg_fBCmphEYpIFaZVSbOMFFapimpMbs69A40il3TBz-sFQKKP0TFAVFxRKR-ARpoWrg</recordid><startdate>20240524</startdate><enddate>20240524</enddate><creator>Sathya Sai, K. Naga</creator><creator>Darsan, Ardra S.</creator><creator>Wang, Kehan</creator><creator>Pandikumar, Alagarsamy</creator><creator>Venkatakrishnan, Shankar Muthukonda</creator><creator>Hong, Zhanglian</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-8804-5195</orcidid><orcidid>https://orcid.org/0000-0001-9940-5128</orcidid><orcidid>https://orcid.org/0000-0001-8163-642X</orcidid><orcidid>https://orcid.org/0009-0007-3969-3771</orcidid></search><sort><creationdate>20240524</creationdate><title>OH-enriched NiS/Ni3S2–Zr Heterostructure for Overall Water Splitting Performance in Alkaline Media</title><author>Sathya Sai, K. Naga ; Darsan, Ardra S. ; Wang, Kehan ; Pandikumar, Alagarsamy ; Venkatakrishnan, Shankar Muthukonda ; Hong, Zhanglian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a190t-139ffe6e965a39871385f7bca7b5af29d71501e32317a210438f3948a537266e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sathya Sai, K. Naga</creatorcontrib><creatorcontrib>Darsan, Ardra S.</creatorcontrib><creatorcontrib>Wang, Kehan</creatorcontrib><creatorcontrib>Pandikumar, Alagarsamy</creatorcontrib><creatorcontrib>Venkatakrishnan, Shankar Muthukonda</creatorcontrib><creatorcontrib>Hong, Zhanglian</creatorcontrib><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sathya Sai, K. Naga</au><au>Darsan, Ardra S.</au><au>Wang, Kehan</au><au>Pandikumar, Alagarsamy</au><au>Venkatakrishnan, Shankar Muthukonda</au><au>Hong, Zhanglian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OH-enriched NiS/Ni3S2–Zr Heterostructure for Overall Water Splitting Performance in Alkaline Media</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2024-05-24</date><risdate>2024</risdate><volume>7</volume><issue>10</issue><spage>11931</spage><epage>11941</epage><pages>11931-11941</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>The development of highly efficient Ni-sulfide-based catalysts is desirable but limited due to slow kinetics in alkaline hydrogen evolution reactions (HER) and water electrolysis. Herein, we report the design of a high-valent doping strategy combined with selective surface etching to generate an OH-enriched porous heterostructure NiS/Ni3S2 nanosphere with an optimal electronic structure. The E-NiS/Ni3S2–Zr(6 mM) electrocatalyst requires only 50 mV to achieve 10 mA cm–2 for the HER. Oxygen evolution reaction (OER) requires 205 and 282 mV to reach 10 and 100 mA cm–2, respectively. In addition, for total water splitting in alkaline medium, the assembled cell with E-NiS/Ni3S2–Zr(6 mM) as both the positive and negative electrodes requires ultralow voltages of 1.41 and 1.51 V at 10 mA and 20 mA cm–2 current densities, respectively. Notably, E-NiS/Ni3S2–Zr(6 mM) showed excellent stability for 30 h in HER, OER, and water electrolysis. Delving into the underlying electrochemical processes and electron transfer kinetics, a diverse array of techniques such as linear sweep voltammogram, electrochemical impedance spectroscopy, electrochemical active surface area, C dl, cyclic voltammetry, chronoamperometric, and turn over frequency were employed. Comprehensive characterization encompassing X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared, Raman, scanning electron microscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy was conducted to explore the electronic and morphological attributes of the synthesized materials. The approach formulated in this study paves the way for achieving optimal electrocatalyst performance, positioning them as compelling alternatives to noble metal-based electrocatalysts.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.4c01502</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8804-5195</orcidid><orcidid>https://orcid.org/0000-0001-9940-5128</orcidid><orcidid>https://orcid.org/0000-0001-8163-642X</orcidid><orcidid>https://orcid.org/0009-0007-3969-3771</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2024-05, Vol.7 (10), p.11931-11941
issn 2574-0970
2574-0970
language eng
recordid cdi_acs_journals_10_1021_acsanm_4c01502
source American Chemical Society (ACS) Journals
title OH-enriched NiS/Ni3S2–Zr Heterostructure for Overall Water Splitting Performance in Alkaline Media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OH-enriched%20NiS/Ni3S2%E2%80%93Zr%20Heterostructure%20for%20Overall%20Water%20Splitting%20Performance%20in%20Alkaline%20Media&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Sathya%20Sai,%20K.%20Naga&rft.date=2024-05-24&rft.volume=7&rft.issue=10&rft.spage=11931&rft.epage=11941&rft.pages=11931-11941&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.4c01502&rft_dat=%3Cacs%3Ea496281791%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true