First-Principles Study of Ti-Deficient Ti3C2 MXene Nanosheets as NH3 Gas Sensors

Sensitive gas sensors are becoming increasingly important in toxic gas detection and environmental monitoring. The applications of conventional gas sensors are limited due to their low sensitivity or high operating temperature. MXenes with high conductivity are conducive to the rapid transmission of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2022-02, Vol.5 (2), p.2470-2475
Hauptverfasser: Li, Li, Cao, Honghao, Liang, Zhishen, Cheng, Yongfa, Yin, Tingting, Liu, Zunyu, Yan, Shuwen, Jia, Shuangfeng, Li, Luying, Wang, Jianbo, Gao, Yihua
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2475
container_issue 2
container_start_page 2470
container_title ACS applied nano materials
container_volume 5
creator Li, Li
Cao, Honghao
Liang, Zhishen
Cheng, Yongfa
Yin, Tingting
Liu, Zunyu
Yan, Shuwen
Jia, Shuangfeng
Li, Luying
Wang, Jianbo
Gao, Yihua
description Sensitive gas sensors are becoming increasingly important in toxic gas detection and environmental monitoring. The applications of conventional gas sensors are limited due to their low sensitivity or high operating temperature. MXenes with high conductivity are conducive to the rapid transmission of electrons and are suitable as highly sensitive NH3 gas sensors. Considering the limited research on the experimental details and sensing mechanism of MXene-based NH3 gas sensors, our research focuses on precisely controlling the atomic structure of MXenes to improve the performance of NH3 gas sensors. The atomic structures of a typical monolayer Ti3C2O2 MXene and its Ti-deficient counterpart as the NH3 gas sensor are systematically studied through first-principles calculations and the nonequilibrium Green’s function method. The Ti-deficient Ti3C2O2 MXene has a relatively stronger physical interaction with NH3 and is comparatively more suitable as a highly sensitive NH3 gas sensor. Atomic-level device simulations show that the current has a greater change when NH3 is adsorbed on the surface of Ti-deficient Ti3C2O2. These detailed calculations provide substantial theoretical support and a useful design scheme to improve the sensitivity of MXene-based gas sensors by deliberately introducing Ti vacancies in the MXene.
doi_str_mv 10.1021/acsanm.1c04158
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsanm_1c04158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c352792859</sourcerecordid><originalsourceid>FETCH-LOGICAL-a160t-b7d4c785db95c95b8973d5f6fc6c847f9083e9dcf9da3a156301fa3d7face6dd3</originalsourceid><addsrcrecordid>eNpNkD1vwjAQhq2qSEWUtbPnSqbnOI7jsUoLVKKABJW6RY4_VCPqVLkw9N83CIZOz93yvncPIQ8cZhwy_mQsmvQ94xZyLssbMs6kyhloBbf_5jsyRTwAANe8EABjsp3HDnu27WKy8efoke76k_ulbaD7yF58iDb61A-LqDL6_umTp2uTWvzyvkdqkK6Xgi4G7nzCtsN7MgrmiH565YR8zF_31ZKtNou36nnFDC-gZ41yuVWldI2WVsum1Eo4GYpgC1vmKmgohdfOBu2MMFwO1_JghFPBWF84Jybk8ZI7fF4f2lOXhraaQ33WUV901Fcd4g9W4FOW</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First-Principles Study of Ti-Deficient Ti3C2 MXene Nanosheets as NH3 Gas Sensors</title><source>American Chemical Society Journals</source><creator>Li, Li ; Cao, Honghao ; Liang, Zhishen ; Cheng, Yongfa ; Yin, Tingting ; Liu, Zunyu ; Yan, Shuwen ; Jia, Shuangfeng ; Li, Luying ; Wang, Jianbo ; Gao, Yihua</creator><creatorcontrib>Li, Li ; Cao, Honghao ; Liang, Zhishen ; Cheng, Yongfa ; Yin, Tingting ; Liu, Zunyu ; Yan, Shuwen ; Jia, Shuangfeng ; Li, Luying ; Wang, Jianbo ; Gao, Yihua</creatorcontrib><description>Sensitive gas sensors are becoming increasingly important in toxic gas detection and environmental monitoring. The applications of conventional gas sensors are limited due to their low sensitivity or high operating temperature. MXenes with high conductivity are conducive to the rapid transmission of electrons and are suitable as highly sensitive NH3 gas sensors. Considering the limited research on the experimental details and sensing mechanism of MXene-based NH3 gas sensors, our research focuses on precisely controlling the atomic structure of MXenes to improve the performance of NH3 gas sensors. The atomic structures of a typical monolayer Ti3C2O2 MXene and its Ti-deficient counterpart as the NH3 gas sensor are systematically studied through first-principles calculations and the nonequilibrium Green’s function method. The Ti-deficient Ti3C2O2 MXene has a relatively stronger physical interaction with NH3 and is comparatively more suitable as a highly sensitive NH3 gas sensor. Atomic-level device simulations show that the current has a greater change when NH3 is adsorbed on the surface of Ti-deficient Ti3C2O2. These detailed calculations provide substantial theoretical support and a useful design scheme to improve the sensitivity of MXene-based gas sensors by deliberately introducing Ti vacancies in the MXene.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.1c04158</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2022-02, Vol.5 (2), p.2470-2475</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8199-5115 ; 0000-0003-1905-9531 ; 0000-0003-4741-6882 ; 0000-0002-3315-3105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.1c04158$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.1c04158$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Cao, Honghao</creatorcontrib><creatorcontrib>Liang, Zhishen</creatorcontrib><creatorcontrib>Cheng, Yongfa</creatorcontrib><creatorcontrib>Yin, Tingting</creatorcontrib><creatorcontrib>Liu, Zunyu</creatorcontrib><creatorcontrib>Yan, Shuwen</creatorcontrib><creatorcontrib>Jia, Shuangfeng</creatorcontrib><creatorcontrib>Li, Luying</creatorcontrib><creatorcontrib>Wang, Jianbo</creatorcontrib><creatorcontrib>Gao, Yihua</creatorcontrib><title>First-Principles Study of Ti-Deficient Ti3C2 MXene Nanosheets as NH3 Gas Sensors</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>Sensitive gas sensors are becoming increasingly important in toxic gas detection and environmental monitoring. The applications of conventional gas sensors are limited due to their low sensitivity or high operating temperature. MXenes with high conductivity are conducive to the rapid transmission of electrons and are suitable as highly sensitive NH3 gas sensors. Considering the limited research on the experimental details and sensing mechanism of MXene-based NH3 gas sensors, our research focuses on precisely controlling the atomic structure of MXenes to improve the performance of NH3 gas sensors. The atomic structures of a typical monolayer Ti3C2O2 MXene and its Ti-deficient counterpart as the NH3 gas sensor are systematically studied through first-principles calculations and the nonequilibrium Green’s function method. The Ti-deficient Ti3C2O2 MXene has a relatively stronger physical interaction with NH3 and is comparatively more suitable as a highly sensitive NH3 gas sensor. Atomic-level device simulations show that the current has a greater change when NH3 is adsorbed on the surface of Ti-deficient Ti3C2O2. These detailed calculations provide substantial theoretical support and a useful design scheme to improve the sensitivity of MXene-based gas sensors by deliberately introducing Ti vacancies in the MXene.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkD1vwjAQhq2qSEWUtbPnSqbnOI7jsUoLVKKABJW6RY4_VCPqVLkw9N83CIZOz93yvncPIQ8cZhwy_mQsmvQ94xZyLssbMs6kyhloBbf_5jsyRTwAANe8EABjsp3HDnu27WKy8efoke76k_ulbaD7yF58iDb61A-LqDL6_umTp2uTWvzyvkdqkK6Xgi4G7nzCtsN7MgrmiH565YR8zF_31ZKtNou36nnFDC-gZ41yuVWldI2WVsum1Eo4GYpgC1vmKmgohdfOBu2MMFwO1_JghFPBWF84Jybk8ZI7fF4f2lOXhraaQ33WUV901Fcd4g9W4FOW</recordid><startdate>20220225</startdate><enddate>20220225</enddate><creator>Li, Li</creator><creator>Cao, Honghao</creator><creator>Liang, Zhishen</creator><creator>Cheng, Yongfa</creator><creator>Yin, Tingting</creator><creator>Liu, Zunyu</creator><creator>Yan, Shuwen</creator><creator>Jia, Shuangfeng</creator><creator>Li, Luying</creator><creator>Wang, Jianbo</creator><creator>Gao, Yihua</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-8199-5115</orcidid><orcidid>https://orcid.org/0000-0003-1905-9531</orcidid><orcidid>https://orcid.org/0000-0003-4741-6882</orcidid><orcidid>https://orcid.org/0000-0002-3315-3105</orcidid></search><sort><creationdate>20220225</creationdate><title>First-Principles Study of Ti-Deficient Ti3C2 MXene Nanosheets as NH3 Gas Sensors</title><author>Li, Li ; Cao, Honghao ; Liang, Zhishen ; Cheng, Yongfa ; Yin, Tingting ; Liu, Zunyu ; Yan, Shuwen ; Jia, Shuangfeng ; Li, Luying ; Wang, Jianbo ; Gao, Yihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a160t-b7d4c785db95c95b8973d5f6fc6c847f9083e9dcf9da3a156301fa3d7face6dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Cao, Honghao</creatorcontrib><creatorcontrib>Liang, Zhishen</creatorcontrib><creatorcontrib>Cheng, Yongfa</creatorcontrib><creatorcontrib>Yin, Tingting</creatorcontrib><creatorcontrib>Liu, Zunyu</creatorcontrib><creatorcontrib>Yan, Shuwen</creatorcontrib><creatorcontrib>Jia, Shuangfeng</creatorcontrib><creatorcontrib>Li, Luying</creatorcontrib><creatorcontrib>Wang, Jianbo</creatorcontrib><creatorcontrib>Gao, Yihua</creatorcontrib><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Li</au><au>Cao, Honghao</au><au>Liang, Zhishen</au><au>Cheng, Yongfa</au><au>Yin, Tingting</au><au>Liu, Zunyu</au><au>Yan, Shuwen</au><au>Jia, Shuangfeng</au><au>Li, Luying</au><au>Wang, Jianbo</au><au>Gao, Yihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-Principles Study of Ti-Deficient Ti3C2 MXene Nanosheets as NH3 Gas Sensors</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2022-02-25</date><risdate>2022</risdate><volume>5</volume><issue>2</issue><spage>2470</spage><epage>2475</epage><pages>2470-2475</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>Sensitive gas sensors are becoming increasingly important in toxic gas detection and environmental monitoring. The applications of conventional gas sensors are limited due to their low sensitivity or high operating temperature. MXenes with high conductivity are conducive to the rapid transmission of electrons and are suitable as highly sensitive NH3 gas sensors. Considering the limited research on the experimental details and sensing mechanism of MXene-based NH3 gas sensors, our research focuses on precisely controlling the atomic structure of MXenes to improve the performance of NH3 gas sensors. The atomic structures of a typical monolayer Ti3C2O2 MXene and its Ti-deficient counterpart as the NH3 gas sensor are systematically studied through first-principles calculations and the nonequilibrium Green’s function method. The Ti-deficient Ti3C2O2 MXene has a relatively stronger physical interaction with NH3 and is comparatively more suitable as a highly sensitive NH3 gas sensor. Atomic-level device simulations show that the current has a greater change when NH3 is adsorbed on the surface of Ti-deficient Ti3C2O2. These detailed calculations provide substantial theoretical support and a useful design scheme to improve the sensitivity of MXene-based gas sensors by deliberately introducing Ti vacancies in the MXene.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.1c04158</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8199-5115</orcidid><orcidid>https://orcid.org/0000-0003-1905-9531</orcidid><orcidid>https://orcid.org/0000-0003-4741-6882</orcidid><orcidid>https://orcid.org/0000-0002-3315-3105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2022-02, Vol.5 (2), p.2470-2475
issn 2574-0970
2574-0970
language eng
recordid cdi_acs_journals_10_1021_acsanm_1c04158
source American Chemical Society Journals
title First-Principles Study of Ti-Deficient Ti3C2 MXene Nanosheets as NH3 Gas Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-Principles%20Study%20of%20Ti-Deficient%20Ti3C2%20MXene%20Nanosheets%20as%20NH3%20Gas%20Sensors&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Li,%20Li&rft.date=2022-02-25&rft.volume=5&rft.issue=2&rft.spage=2470&rft.epage=2475&rft.pages=2470-2475&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.1c04158&rft_dat=%3Cacs%3Ec352792859%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true