HKUST‑1 Metal–Organic Framework Nanoparticle/Graphene Oxide Nanocomposite Aerogels for CO2 and CH4 Adsorption and Separation

The development of nanostructured composites made of metal–organic frameworks (MOFs) and graphene-based components, including exfoliated nanoplates of graphene oxide (GO) or reduced (rGO) graphene oxide, is an area of great interest in gas storage and separation. To improve the industrial viability,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2021-11, Vol.4 (11), p.12712-12725
Hauptverfasser: Rosado, Albert, Borrás, Alejandro, Fraile, Julio, Navarro, Jorge A. R, Suárez-García, Fabián, Stylianou, Kyriakos C, López-Periago, Ana M, Planas, José Giner, Domingo, Concepción, Yazdi, Amirali
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12725
container_issue 11
container_start_page 12712
container_title ACS applied nano materials
container_volume 4
creator Rosado, Albert
Borrás, Alejandro
Fraile, Julio
Navarro, Jorge A. R
Suárez-García, Fabián
Stylianou, Kyriakos C
López-Periago, Ana M
Planas, José Giner
Domingo, Concepción
Yazdi, Amirali
description The development of nanostructured composites made of metal–organic frameworks (MOFs) and graphene-based components, including exfoliated nanoplates of graphene oxide (GO) or reduced (rGO) graphene oxide, is an area of great interest in gas storage and separation. To improve the industrial viability, it is commonly demanded to build these nanocomposites with the shape of compact units, such as monoliths, foams, pellets, or films. Methods to generate those 3D nanocomposites involving rGO are abundant; however, they become scarce when GO is the desired support due to the difficulty in maintaining the carbon matrix oxidized during the structuration process. In this work, a methodology based on the use of supercritical CO2 (scCO2) is described for the synthesis of nanocomposites involving a discontinuous MOF phase, e.g. nanoparticles (NPs) of HKUST-1, decorating the surface of a continuous GO matrix, with surface oxygen groups favoring MOF attachment. The use of this new supercritical methodology allows the nanostructuration of the composite in the form of 3D aerogels while avoiding the reduction of GO. Enhanced values of textural properties, determined by low-temperature N2 adsorption–desorption, were observed for the nanocomposites in comparison to the values calculated for similar physical mixtures, highlighting an increase of 40–45% in the value of the surface area for samples with a high percentage of HKUST-1. Moreover, the composite aerogels, displaying a type II isotherm, outperform pristine HKUST-1 in regard to the CH4 practical working capacity at high pressure. Particularly, a composite exhibiting more than 2-fold the working capacity of net HKUST-1 NPs was obtained. Columns involving the composite aerogel as the stationary phase were used to study the separation of N2/CO2 and CH4/CO2 gas mixtures. The results showed a high selectivity of the nanostructured HKUST-1@GO composites for CO2, with breakthrough times of ca. 20 min g–1 and stable cyclic operations.
doi_str_mv 10.1021/acsanm.1c03301
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsanm_1c03301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d53716569</sourcerecordid><originalsourceid>FETCH-LOGICAL-a160t-2fe8e92dc449d6e291f84adb8cef717a3684ca2e00a2e760a9e0e637d55cbba03</originalsourceid><addsrcrecordid>eNpNkE9PwkAQxTdGEwly9bxnk8Jst_TPkTQCRrQH4NwM2ykWy26zW6NHvoLxG_JJLODBy5v3ZpI3yY-xewFDAb4YoXKo90OhQEoQV6znj6PAgySC63_-lg2c2wGASEQoAXrsMH9eL1fHw7fgL9RifTz8ZHaLulJ8anFPn8a-81fUpkHbVqqm0cxi80aaePZVFXS-KbNvjKta4hOyZku146WxPM18jrrg6Tzgk8IZ27SV0efVkro-PMU7dlNi7WjwN_tsPX1cpXNvkc2e0snCQxFC6_klxZT4hQqCpAjJT0QZB1hsYkVlJCKUYRwo9AmgkygETAgolFExHqvNBkH22cOltyOV78yH1d23XEB-wpdf8OV_-OQvaU5nQQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>HKUST‑1 Metal–Organic Framework Nanoparticle/Graphene Oxide Nanocomposite Aerogels for CO2 and CH4 Adsorption and Separation</title><source>American Chemical Society Journals</source><creator>Rosado, Albert ; Borrás, Alejandro ; Fraile, Julio ; Navarro, Jorge A. R ; Suárez-García, Fabián ; Stylianou, Kyriakos C ; López-Periago, Ana M ; Planas, José Giner ; Domingo, Concepción ; Yazdi, Amirali</creator><creatorcontrib>Rosado, Albert ; Borrás, Alejandro ; Fraile, Julio ; Navarro, Jorge A. R ; Suárez-García, Fabián ; Stylianou, Kyriakos C ; López-Periago, Ana M ; Planas, José Giner ; Domingo, Concepción ; Yazdi, Amirali</creatorcontrib><description>The development of nanostructured composites made of metal–organic frameworks (MOFs) and graphene-based components, including exfoliated nanoplates of graphene oxide (GO) or reduced (rGO) graphene oxide, is an area of great interest in gas storage and separation. To improve the industrial viability, it is commonly demanded to build these nanocomposites with the shape of compact units, such as monoliths, foams, pellets, or films. Methods to generate those 3D nanocomposites involving rGO are abundant; however, they become scarce when GO is the desired support due to the difficulty in maintaining the carbon matrix oxidized during the structuration process. In this work, a methodology based on the use of supercritical CO2 (scCO2) is described for the synthesis of nanocomposites involving a discontinuous MOF phase, e.g. nanoparticles (NPs) of HKUST-1, decorating the surface of a continuous GO matrix, with surface oxygen groups favoring MOF attachment. The use of this new supercritical methodology allows the nanostructuration of the composite in the form of 3D aerogels while avoiding the reduction of GO. Enhanced values of textural properties, determined by low-temperature N2 adsorption–desorption, were observed for the nanocomposites in comparison to the values calculated for similar physical mixtures, highlighting an increase of 40–45% in the value of the surface area for samples with a high percentage of HKUST-1. Moreover, the composite aerogels, displaying a type II isotherm, outperform pristine HKUST-1 in regard to the CH4 practical working capacity at high pressure. Particularly, a composite exhibiting more than 2-fold the working capacity of net HKUST-1 NPs was obtained. Columns involving the composite aerogel as the stationary phase were used to study the separation of N2/CO2 and CH4/CO2 gas mixtures. The results showed a high selectivity of the nanostructured HKUST-1@GO composites for CO2, with breakthrough times of ca. 20 min g–1 and stable cyclic operations.</description><identifier>ISSN: 2574-0970</identifier><identifier>EISSN: 2574-0970</identifier><identifier>DOI: 10.1021/acsanm.1c03301</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied nano materials, 2021-11, Vol.4 (11), p.12712-12725</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8359-0397 ; 0000-0003-1670-0020 ; 0000-0002-6976-8283 ; 0000-0002-3777-3205 ; 0000-0002-1648-2169 ; 0000-0001-9420-8504 ; 0000-0003-2961-7920 ; 0000-0003-3222-9566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsanm.1c03301$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsanm.1c03301$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Rosado, Albert</creatorcontrib><creatorcontrib>Borrás, Alejandro</creatorcontrib><creatorcontrib>Fraile, Julio</creatorcontrib><creatorcontrib>Navarro, Jorge A. R</creatorcontrib><creatorcontrib>Suárez-García, Fabián</creatorcontrib><creatorcontrib>Stylianou, Kyriakos C</creatorcontrib><creatorcontrib>López-Periago, Ana M</creatorcontrib><creatorcontrib>Planas, José Giner</creatorcontrib><creatorcontrib>Domingo, Concepción</creatorcontrib><creatorcontrib>Yazdi, Amirali</creatorcontrib><title>HKUST‑1 Metal–Organic Framework Nanoparticle/Graphene Oxide Nanocomposite Aerogels for CO2 and CH4 Adsorption and Separation</title><title>ACS applied nano materials</title><addtitle>ACS Appl. Nano Mater</addtitle><description>The development of nanostructured composites made of metal–organic frameworks (MOFs) and graphene-based components, including exfoliated nanoplates of graphene oxide (GO) or reduced (rGO) graphene oxide, is an area of great interest in gas storage and separation. To improve the industrial viability, it is commonly demanded to build these nanocomposites with the shape of compact units, such as monoliths, foams, pellets, or films. Methods to generate those 3D nanocomposites involving rGO are abundant; however, they become scarce when GO is the desired support due to the difficulty in maintaining the carbon matrix oxidized during the structuration process. In this work, a methodology based on the use of supercritical CO2 (scCO2) is described for the synthesis of nanocomposites involving a discontinuous MOF phase, e.g. nanoparticles (NPs) of HKUST-1, decorating the surface of a continuous GO matrix, with surface oxygen groups favoring MOF attachment. The use of this new supercritical methodology allows the nanostructuration of the composite in the form of 3D aerogels while avoiding the reduction of GO. Enhanced values of textural properties, determined by low-temperature N2 adsorption–desorption, were observed for the nanocomposites in comparison to the values calculated for similar physical mixtures, highlighting an increase of 40–45% in the value of the surface area for samples with a high percentage of HKUST-1. Moreover, the composite aerogels, displaying a type II isotherm, outperform pristine HKUST-1 in regard to the CH4 practical working capacity at high pressure. Particularly, a composite exhibiting more than 2-fold the working capacity of net HKUST-1 NPs was obtained. Columns involving the composite aerogel as the stationary phase were used to study the separation of N2/CO2 and CH4/CO2 gas mixtures. The results showed a high selectivity of the nanostructured HKUST-1@GO composites for CO2, with breakthrough times of ca. 20 min g–1 and stable cyclic operations.</description><issn>2574-0970</issn><issn>2574-0970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkE9PwkAQxTdGEwly9bxnk8Jst_TPkTQCRrQH4NwM2ykWy26zW6NHvoLxG_JJLODBy5v3ZpI3yY-xewFDAb4YoXKo90OhQEoQV6znj6PAgySC63_-lg2c2wGASEQoAXrsMH9eL1fHw7fgL9RifTz8ZHaLulJ8anFPn8a-81fUpkHbVqqm0cxi80aaePZVFXS-KbNvjKta4hOyZku146WxPM18jrrg6Tzgk8IZ27SV0efVkro-PMU7dlNi7WjwN_tsPX1cpXNvkc2e0snCQxFC6_klxZT4hQqCpAjJT0QZB1hsYkVlJCKUYRwo9AmgkygETAgolFExHqvNBkH22cOltyOV78yH1d23XEB-wpdf8OV_-OQvaU5nQQ</recordid><startdate>20211126</startdate><enddate>20211126</enddate><creator>Rosado, Albert</creator><creator>Borrás, Alejandro</creator><creator>Fraile, Julio</creator><creator>Navarro, Jorge A. R</creator><creator>Suárez-García, Fabián</creator><creator>Stylianou, Kyriakos C</creator><creator>López-Periago, Ana M</creator><creator>Planas, José Giner</creator><creator>Domingo, Concepción</creator><creator>Yazdi, Amirali</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-8359-0397</orcidid><orcidid>https://orcid.org/0000-0003-1670-0020</orcidid><orcidid>https://orcid.org/0000-0002-6976-8283</orcidid><orcidid>https://orcid.org/0000-0002-3777-3205</orcidid><orcidid>https://orcid.org/0000-0002-1648-2169</orcidid><orcidid>https://orcid.org/0000-0001-9420-8504</orcidid><orcidid>https://orcid.org/0000-0003-2961-7920</orcidid><orcidid>https://orcid.org/0000-0003-3222-9566</orcidid></search><sort><creationdate>20211126</creationdate><title>HKUST‑1 Metal–Organic Framework Nanoparticle/Graphene Oxide Nanocomposite Aerogels for CO2 and CH4 Adsorption and Separation</title><author>Rosado, Albert ; Borrás, Alejandro ; Fraile, Julio ; Navarro, Jorge A. R ; Suárez-García, Fabián ; Stylianou, Kyriakos C ; López-Periago, Ana M ; Planas, José Giner ; Domingo, Concepción ; Yazdi, Amirali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a160t-2fe8e92dc449d6e291f84adb8cef717a3684ca2e00a2e760a9e0e637d55cbba03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosado, Albert</creatorcontrib><creatorcontrib>Borrás, Alejandro</creatorcontrib><creatorcontrib>Fraile, Julio</creatorcontrib><creatorcontrib>Navarro, Jorge A. R</creatorcontrib><creatorcontrib>Suárez-García, Fabián</creatorcontrib><creatorcontrib>Stylianou, Kyriakos C</creatorcontrib><creatorcontrib>López-Periago, Ana M</creatorcontrib><creatorcontrib>Planas, José Giner</creatorcontrib><creatorcontrib>Domingo, Concepción</creatorcontrib><creatorcontrib>Yazdi, Amirali</creatorcontrib><jtitle>ACS applied nano materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosado, Albert</au><au>Borrás, Alejandro</au><au>Fraile, Julio</au><au>Navarro, Jorge A. R</au><au>Suárez-García, Fabián</au><au>Stylianou, Kyriakos C</au><au>López-Periago, Ana M</au><au>Planas, José Giner</au><au>Domingo, Concepción</au><au>Yazdi, Amirali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HKUST‑1 Metal–Organic Framework Nanoparticle/Graphene Oxide Nanocomposite Aerogels for CO2 and CH4 Adsorption and Separation</atitle><jtitle>ACS applied nano materials</jtitle><addtitle>ACS Appl. Nano Mater</addtitle><date>2021-11-26</date><risdate>2021</risdate><volume>4</volume><issue>11</issue><spage>12712</spage><epage>12725</epage><pages>12712-12725</pages><issn>2574-0970</issn><eissn>2574-0970</eissn><abstract>The development of nanostructured composites made of metal–organic frameworks (MOFs) and graphene-based components, including exfoliated nanoplates of graphene oxide (GO) or reduced (rGO) graphene oxide, is an area of great interest in gas storage and separation. To improve the industrial viability, it is commonly demanded to build these nanocomposites with the shape of compact units, such as monoliths, foams, pellets, or films. Methods to generate those 3D nanocomposites involving rGO are abundant; however, they become scarce when GO is the desired support due to the difficulty in maintaining the carbon matrix oxidized during the structuration process. In this work, a methodology based on the use of supercritical CO2 (scCO2) is described for the synthesis of nanocomposites involving a discontinuous MOF phase, e.g. nanoparticles (NPs) of HKUST-1, decorating the surface of a continuous GO matrix, with surface oxygen groups favoring MOF attachment. The use of this new supercritical methodology allows the nanostructuration of the composite in the form of 3D aerogels while avoiding the reduction of GO. Enhanced values of textural properties, determined by low-temperature N2 adsorption–desorption, were observed for the nanocomposites in comparison to the values calculated for similar physical mixtures, highlighting an increase of 40–45% in the value of the surface area for samples with a high percentage of HKUST-1. Moreover, the composite aerogels, displaying a type II isotherm, outperform pristine HKUST-1 in regard to the CH4 practical working capacity at high pressure. Particularly, a composite exhibiting more than 2-fold the working capacity of net HKUST-1 NPs was obtained. Columns involving the composite aerogel as the stationary phase were used to study the separation of N2/CO2 and CH4/CO2 gas mixtures. The results showed a high selectivity of the nanostructured HKUST-1@GO composites for CO2, with breakthrough times of ca. 20 min g–1 and stable cyclic operations.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsanm.1c03301</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8359-0397</orcidid><orcidid>https://orcid.org/0000-0003-1670-0020</orcidid><orcidid>https://orcid.org/0000-0002-6976-8283</orcidid><orcidid>https://orcid.org/0000-0002-3777-3205</orcidid><orcidid>https://orcid.org/0000-0002-1648-2169</orcidid><orcidid>https://orcid.org/0000-0001-9420-8504</orcidid><orcidid>https://orcid.org/0000-0003-2961-7920</orcidid><orcidid>https://orcid.org/0000-0003-3222-9566</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2574-0970
ispartof ACS applied nano materials, 2021-11, Vol.4 (11), p.12712-12725
issn 2574-0970
2574-0970
language eng
recordid cdi_acs_journals_10_1021_acsanm_1c03301
source American Chemical Society Journals
title HKUST‑1 Metal–Organic Framework Nanoparticle/Graphene Oxide Nanocomposite Aerogels for CO2 and CH4 Adsorption and Separation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HKUST%E2%80%911%20Metal%E2%80%93Organic%20Framework%20Nanoparticle/Graphene%20Oxide%20Nanocomposite%20Aerogels%20for%20CO2%20and%20CH4%20Adsorption%20and%20Separation&rft.jtitle=ACS%20applied%20nano%20materials&rft.au=Rosado,%20Albert&rft.date=2021-11-26&rft.volume=4&rft.issue=11&rft.spage=12712&rft.epage=12725&rft.pages=12712-12725&rft.issn=2574-0970&rft.eissn=2574-0970&rft_id=info:doi/10.1021/acsanm.1c03301&rft_dat=%3Cacs%3Ed53716569%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true