Enhancing the High-Voltage Cycling Performance of LiNi0.5Mn0.3Co0.2O2 by Retarding Its Interfacial Reaction with an Electrolyte by Atomic-Layer-Deposited Al2O3

High-voltage (>4.3 V) operation of LiNi x Mn y Co z O2 (NMC; 0 ≤ x, y, z < 1) for high capacity has become a new challenge for next-generation lithium-ion batteries because of the rapid capacity degradation over cycling. In this work, we investigate the performance of LiNi0.5Mn0.3Co0.2O2 (NMC5...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2015-11, Vol.7 (45), p.25105-25112
Hauptverfasser: Su, Yantao, Cui, Suihan, Zhuo, Zengqing, Yang, Wanli, Wang, Xinwei, Pan, Feng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25112
container_issue 45
container_start_page 25105
container_title ACS applied materials & interfaces
container_volume 7
creator Su, Yantao
Cui, Suihan
Zhuo, Zengqing
Yang, Wanli
Wang, Xinwei
Pan, Feng
description High-voltage (>4.3 V) operation of LiNi x Mn y Co z O2 (NMC; 0 ≤ x, y, z < 1) for high capacity has become a new challenge for next-generation lithium-ion batteries because of the rapid capacity degradation over cycling. In this work, we investigate the performance of LiNi0.5Mn0.3Co0.2O2 (NMC532) electrodes with and without an atomic-layer-deposited (ALD) Al2O3 layer for charging/discharging in the range from 3.0 to 4.5 V (high voltage). The results of the electrochemical measurements show that the cells with ALD Al2O3-coated NMC532 electrodes have much enhanced cycling stability. The mechanism was investigated by using X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and electrochemical methods. We find that the ultrathin ALD Al2O3 film can reduce the interface resistance of lithium-ion diffusion and enhance the surface stability of NMC532 by retarding the reactions at NMC532/electrolyte interfaces for preventing the formation of a new microstructure rock-salt phase NiO around the NMC532 surfaces.
doi_str_mv 10.1021/acsami.5b05500
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsami_5b05500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c29158541</sourcerecordid><originalsourceid>FETCH-LOGICAL-a190t-f683d64acd1734cb976e764d89097ca24a5eec5794f6e88504e570f67e4f62de3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFavnvcsJE72Ix_HEqstRCuiXsN2M2m2pLuSrEj-Gv9VE1o8zTDvvXnwI-Q2gjACFt0r3auDCeUWpAQ4I7MoEyJImWTn_7sQl-Sq7_cAMWcgZ-R3aRtltbE76hukK7Nrgk_XerVDmg-6nYRX7GrXHUYbUlfTwrwYCOWzhZDnDkK2YXQ70Df0qqsm_9r3dG39mFLaqHZUlPbGWfpjfEOVpcsWte9cO3ickgvvDkYHhRqwCx7wy_XGY0UXLdvwa3JRq7bHm9Ock4_H5Xu-CorN0zpfFIGKMvBBHae8ioXSVZRwobdZEmMSiyrNIEu0YkJJRC2TTNQxpqkEgTKBOk5wPLAK-ZzcHf-OFMu9--7s2FZGUE5oyyPa8oSW_wFrN22s</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancing the High-Voltage Cycling Performance of LiNi0.5Mn0.3Co0.2O2 by Retarding Its Interfacial Reaction with an Electrolyte by Atomic-Layer-Deposited Al2O3</title><source>American Chemical Society Journals</source><creator>Su, Yantao ; Cui, Suihan ; Zhuo, Zengqing ; Yang, Wanli ; Wang, Xinwei ; Pan, Feng</creator><creatorcontrib>Su, Yantao ; Cui, Suihan ; Zhuo, Zengqing ; Yang, Wanli ; Wang, Xinwei ; Pan, Feng</creatorcontrib><description>High-voltage (&gt;4.3 V) operation of LiNi x Mn y Co z O2 (NMC; 0 ≤ x, y, z &lt; 1) for high capacity has become a new challenge for next-generation lithium-ion batteries because of the rapid capacity degradation over cycling. In this work, we investigate the performance of LiNi0.5Mn0.3Co0.2O2 (NMC532) electrodes with and without an atomic-layer-deposited (ALD) Al2O3 layer for charging/discharging in the range from 3.0 to 4.5 V (high voltage). The results of the electrochemical measurements show that the cells with ALD Al2O3-coated NMC532 electrodes have much enhanced cycling stability. The mechanism was investigated by using X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and electrochemical methods. We find that the ultrathin ALD Al2O3 film can reduce the interface resistance of lithium-ion diffusion and enhance the surface stability of NMC532 by retarding the reactions at NMC532/electrolyte interfaces for preventing the formation of a new microstructure rock-salt phase NiO around the NMC532 surfaces.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.5b05500</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2015-11, Vol.7 (45), p.25105-25112</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.5b05500$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.5b05500$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Su, Yantao</creatorcontrib><creatorcontrib>Cui, Suihan</creatorcontrib><creatorcontrib>Zhuo, Zengqing</creatorcontrib><creatorcontrib>Yang, Wanli</creatorcontrib><creatorcontrib>Wang, Xinwei</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><title>Enhancing the High-Voltage Cycling Performance of LiNi0.5Mn0.3Co0.2O2 by Retarding Its Interfacial Reaction with an Electrolyte by Atomic-Layer-Deposited Al2O3</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>High-voltage (&gt;4.3 V) operation of LiNi x Mn y Co z O2 (NMC; 0 ≤ x, y, z &lt; 1) for high capacity has become a new challenge for next-generation lithium-ion batteries because of the rapid capacity degradation over cycling. In this work, we investigate the performance of LiNi0.5Mn0.3Co0.2O2 (NMC532) electrodes with and without an atomic-layer-deposited (ALD) Al2O3 layer for charging/discharging in the range from 3.0 to 4.5 V (high voltage). The results of the electrochemical measurements show that the cells with ALD Al2O3-coated NMC532 electrodes have much enhanced cycling stability. The mechanism was investigated by using X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and electrochemical methods. We find that the ultrathin ALD Al2O3 film can reduce the interface resistance of lithium-ion diffusion and enhance the surface stability of NMC532 by retarding the reactions at NMC532/electrolyte interfaces for preventing the formation of a new microstructure rock-salt phase NiO around the NMC532 surfaces.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kM1Lw0AQxRdRsFavnvcsJE72Ix_HEqstRCuiXsN2M2m2pLuSrEj-Gv9VE1o8zTDvvXnwI-Q2gjACFt0r3auDCeUWpAQ4I7MoEyJImWTn_7sQl-Sq7_cAMWcgZ-R3aRtltbE76hukK7Nrgk_XerVDmg-6nYRX7GrXHUYbUlfTwrwYCOWzhZDnDkK2YXQ70Df0qqsm_9r3dG39mFLaqHZUlPbGWfpjfEOVpcsWte9cO3ickgvvDkYHhRqwCx7wy_XGY0UXLdvwa3JRq7bHm9Ock4_H5Xu-CorN0zpfFIGKMvBBHae8ioXSVZRwobdZEmMSiyrNIEu0YkJJRC2TTNQxpqkEgTKBOk5wPLAK-ZzcHf-OFMu9--7s2FZGUE5oyyPa8oSW_wFrN22s</recordid><startdate>20151118</startdate><enddate>20151118</enddate><creator>Su, Yantao</creator><creator>Cui, Suihan</creator><creator>Zhuo, Zengqing</creator><creator>Yang, Wanli</creator><creator>Wang, Xinwei</creator><creator>Pan, Feng</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20151118</creationdate><title>Enhancing the High-Voltage Cycling Performance of LiNi0.5Mn0.3Co0.2O2 by Retarding Its Interfacial Reaction with an Electrolyte by Atomic-Layer-Deposited Al2O3</title><author>Su, Yantao ; Cui, Suihan ; Zhuo, Zengqing ; Yang, Wanli ; Wang, Xinwei ; Pan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a190t-f683d64acd1734cb976e764d89097ca24a5eec5794f6e88504e570f67e4f62de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Yantao</creatorcontrib><creatorcontrib>Cui, Suihan</creatorcontrib><creatorcontrib>Zhuo, Zengqing</creatorcontrib><creatorcontrib>Yang, Wanli</creatorcontrib><creatorcontrib>Wang, Xinwei</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Yantao</au><au>Cui, Suihan</au><au>Zhuo, Zengqing</au><au>Yang, Wanli</au><au>Wang, Xinwei</au><au>Pan, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the High-Voltage Cycling Performance of LiNi0.5Mn0.3Co0.2O2 by Retarding Its Interfacial Reaction with an Electrolyte by Atomic-Layer-Deposited Al2O3</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2015-11-18</date><risdate>2015</risdate><volume>7</volume><issue>45</issue><spage>25105</spage><epage>25112</epage><pages>25105-25112</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>High-voltage (&gt;4.3 V) operation of LiNi x Mn y Co z O2 (NMC; 0 ≤ x, y, z &lt; 1) for high capacity has become a new challenge for next-generation lithium-ion batteries because of the rapid capacity degradation over cycling. In this work, we investigate the performance of LiNi0.5Mn0.3Co0.2O2 (NMC532) electrodes with and without an atomic-layer-deposited (ALD) Al2O3 layer for charging/discharging in the range from 3.0 to 4.5 V (high voltage). The results of the electrochemical measurements show that the cells with ALD Al2O3-coated NMC532 electrodes have much enhanced cycling stability. The mechanism was investigated by using X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and electrochemical methods. We find that the ultrathin ALD Al2O3 film can reduce the interface resistance of lithium-ion diffusion and enhance the surface stability of NMC532 by retarding the reactions at NMC532/electrolyte interfaces for preventing the formation of a new microstructure rock-salt phase NiO around the NMC532 surfaces.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.5b05500</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2015-11, Vol.7 (45), p.25105-25112
issn 1944-8244
1944-8252
language eng
recordid cdi_acs_journals_10_1021_acsami_5b05500
source American Chemical Society Journals
title Enhancing the High-Voltage Cycling Performance of LiNi0.5Mn0.3Co0.2O2 by Retarding Its Interfacial Reaction with an Electrolyte by Atomic-Layer-Deposited Al2O3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20High-Voltage%20Cycling%20Performance%20of%20LiNi0.5Mn0.3Co0.2O2%20by%20Retarding%20Its%20Interfacial%20Reaction%20with%20an%20Electrolyte%20by%20Atomic-Layer-Deposited%20Al2O3&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Su,%20Yantao&rft.date=2015-11-18&rft.volume=7&rft.issue=45&rft.spage=25105&rft.epage=25112&rft.pages=25105-25112&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.5b05500&rft_dat=%3Cacs%3Ec29158541%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true