Detection of Volatile Organic Compounds through Spectroscopic Signatures in Nanoporous Fabry–Pérot Optical Microcavities
Increasingly complex modern gas-monitoring scenarios necessitate advanced sensing capabilities to detect and identify a diverse range of gases under varying conditions. There is a rising demand for individual sensors with multiple responses capable of recognizing gases, identifying components in mix...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2024-05, Vol.16 (19), p.24961-24975 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24975 |
---|---|
container_issue | 19 |
container_start_page | 24961 |
container_title | ACS applied materials & interfaces |
container_volume | 16 |
creator | Tran, Khoa Nhu Tran, Huong Nguyen Que Lim, Siew Yee Abell, Andrew D. Law, Cheryl Suwen Santos, Abel |
description | Increasingly complex modern gas-monitoring scenarios necessitate advanced sensing capabilities to detect and identify a diverse range of gases under varying conditions. There is a rising demand for individual sensors with multiple responses capable of recognizing gases, identifying components in mixtures, and providing stable responses. Inspired by gas sensors employing multivariable response principles, we develop a nanoporous anodic alumina high-order microcavity (NAA-HOμCV) gas sensor with multiple optical outputs for discriminative gas detection. The NAA-HOμCV architecture, formed by a Fabry–Pérot microcavity with distributed Bragg reflector (DBR) mirrors and an extended-length microcavity layer supporting multiple resonant modes, serves as an effective solid-state fingerprint platform for distinguishing volatile organic compound (VOC) gases. Our research reveals that the coupling strength of light into resonant modes and their evolution depend on the thickness of the DBR mirrors and the dimension of the microcavity layer, which allows us to optimize the discriminative sensing capability of the NAA-HOμCV sensor through structural engineering of the microcavity and photonic crystal mirrors. Gas-sensing experiments conducted on the NAA-HOμCV sensor demonstrate real-time discrimination between physiosorbed VOC gases (isopropanol, ethanol, or acetone) in reversible gas sensing. It also achieves superior ppb-level sensing in irreversible gas sensing of model silane molecules. Our study presents promising avenues for designing compact, cost-effective, and highly efficient gas sensors with tailored properties for discriminative gas detection. |
doi_str_mv | 10.1021/acsami.4c03804 |
format | Article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsami_4c03804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a19102564</sourcerecordid><originalsourceid>FETCH-acs_journals_10_1021_acsami_4c038043</originalsourceid><addsrcrecordid>eNqVj8FKAzEURYMo2Kpb128ttCYzqdR1tbipFSpuw2uaTl-Z5oUkIwgu9Bv8Lb_CLzFice_qXu49myPEuZJDJSt1iTbhjobaynos9YHoqWutB-NqVB3-da2PRT-lrZRXdSVHPfF647KzmdgDr-GJW8zUOpjHBj1ZmPAucOdXCfImctdsYBEKHjlZDuVfUOMxd9ElIA_36Dlw4RJMcRlfvt4-Htzne-QM85DJYgszspEtPlMml07F0Rrb5M72eSIuprePk7tBUTFb7qIvq1HS_PiZXz-z96v_BX8DWKtc8w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detection of Volatile Organic Compounds through Spectroscopic Signatures in Nanoporous Fabry–Pérot Optical Microcavities</title><source>American Chemical Society Journals</source><creator>Tran, Khoa Nhu ; Tran, Huong Nguyen Que ; Lim, Siew Yee ; Abell, Andrew D. ; Law, Cheryl Suwen ; Santos, Abel</creator><creatorcontrib>Tran, Khoa Nhu ; Tran, Huong Nguyen Que ; Lim, Siew Yee ; Abell, Andrew D. ; Law, Cheryl Suwen ; Santos, Abel</creatorcontrib><description>Increasingly complex modern gas-monitoring scenarios necessitate advanced sensing capabilities to detect and identify a diverse range of gases under varying conditions. There is a rising demand for individual sensors with multiple responses capable of recognizing gases, identifying components in mixtures, and providing stable responses. Inspired by gas sensors employing multivariable response principles, we develop a nanoporous anodic alumina high-order microcavity (NAA-HOμCV) gas sensor with multiple optical outputs for discriminative gas detection. The NAA-HOμCV architecture, formed by a Fabry–Pérot microcavity with distributed Bragg reflector (DBR) mirrors and an extended-length microcavity layer supporting multiple resonant modes, serves as an effective solid-state fingerprint platform for distinguishing volatile organic compound (VOC) gases. Our research reveals that the coupling strength of light into resonant modes and their evolution depend on the thickness of the DBR mirrors and the dimension of the microcavity layer, which allows us to optimize the discriminative sensing capability of the NAA-HOμCV sensor through structural engineering of the microcavity and photonic crystal mirrors. Gas-sensing experiments conducted on the NAA-HOμCV sensor demonstrate real-time discrimination between physiosorbed VOC gases (isopropanol, ethanol, or acetone) in reversible gas sensing. It also achieves superior ppb-level sensing in irreversible gas sensing of model silane molecules. Our study presents promising avenues for designing compact, cost-effective, and highly efficient gas sensors with tailored properties for discriminative gas detection.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.4c03804</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Functional Inorganic Materials and Devices</subject><ispartof>ACS applied materials & interfaces, 2024-05, Vol.16 (19), p.24961-24975</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8309-262X ; 0000-0002-5677-9039 ; 0000-0002-0604-2629 ; 0000-0002-3276-8052 ; 0000-0002-5081-5684 ; 0000-0001-5812-2463</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.4c03804$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.4c03804$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Tran, Khoa Nhu</creatorcontrib><creatorcontrib>Tran, Huong Nguyen Que</creatorcontrib><creatorcontrib>Lim, Siew Yee</creatorcontrib><creatorcontrib>Abell, Andrew D.</creatorcontrib><creatorcontrib>Law, Cheryl Suwen</creatorcontrib><creatorcontrib>Santos, Abel</creatorcontrib><title>Detection of Volatile Organic Compounds through Spectroscopic Signatures in Nanoporous Fabry–Pérot Optical Microcavities</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Increasingly complex modern gas-monitoring scenarios necessitate advanced sensing capabilities to detect and identify a diverse range of gases under varying conditions. There is a rising demand for individual sensors with multiple responses capable of recognizing gases, identifying components in mixtures, and providing stable responses. Inspired by gas sensors employing multivariable response principles, we develop a nanoporous anodic alumina high-order microcavity (NAA-HOμCV) gas sensor with multiple optical outputs for discriminative gas detection. The NAA-HOμCV architecture, formed by a Fabry–Pérot microcavity with distributed Bragg reflector (DBR) mirrors and an extended-length microcavity layer supporting multiple resonant modes, serves as an effective solid-state fingerprint platform for distinguishing volatile organic compound (VOC) gases. Our research reveals that the coupling strength of light into resonant modes and their evolution depend on the thickness of the DBR mirrors and the dimension of the microcavity layer, which allows us to optimize the discriminative sensing capability of the NAA-HOμCV sensor through structural engineering of the microcavity and photonic crystal mirrors. Gas-sensing experiments conducted on the NAA-HOμCV sensor demonstrate real-time discrimination between physiosorbed VOC gases (isopropanol, ethanol, or acetone) in reversible gas sensing. It also achieves superior ppb-level sensing in irreversible gas sensing of model silane molecules. Our study presents promising avenues for designing compact, cost-effective, and highly efficient gas sensors with tailored properties for discriminative gas detection.</description><subject>Functional Inorganic Materials and Devices</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNqVj8FKAzEURYMo2Kpb128ttCYzqdR1tbipFSpuw2uaTl-Z5oUkIwgu9Bv8Lb_CLzFice_qXu49myPEuZJDJSt1iTbhjobaynos9YHoqWutB-NqVB3-da2PRT-lrZRXdSVHPfF647KzmdgDr-GJW8zUOpjHBj1ZmPAucOdXCfImctdsYBEKHjlZDuVfUOMxd9ElIA_36Dlw4RJMcRlfvt4-Htzne-QM85DJYgszspEtPlMml07F0Rrb5M72eSIuprePk7tBUTFb7qIvq1HS_PiZXz-z96v_BX8DWKtc8w</recordid><startdate>20240515</startdate><enddate>20240515</enddate><creator>Tran, Khoa Nhu</creator><creator>Tran, Huong Nguyen Que</creator><creator>Lim, Siew Yee</creator><creator>Abell, Andrew D.</creator><creator>Law, Cheryl Suwen</creator><creator>Santos, Abel</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-8309-262X</orcidid><orcidid>https://orcid.org/0000-0002-5677-9039</orcidid><orcidid>https://orcid.org/0000-0002-0604-2629</orcidid><orcidid>https://orcid.org/0000-0002-3276-8052</orcidid><orcidid>https://orcid.org/0000-0002-5081-5684</orcidid><orcidid>https://orcid.org/0000-0001-5812-2463</orcidid></search><sort><creationdate>20240515</creationdate><title>Detection of Volatile Organic Compounds through Spectroscopic Signatures in Nanoporous Fabry–Pérot Optical Microcavities</title><author>Tran, Khoa Nhu ; Tran, Huong Nguyen Que ; Lim, Siew Yee ; Abell, Andrew D. ; Law, Cheryl Suwen ; Santos, Abel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-acs_journals_10_1021_acsami_4c038043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Functional Inorganic Materials and Devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Khoa Nhu</creatorcontrib><creatorcontrib>Tran, Huong Nguyen Que</creatorcontrib><creatorcontrib>Lim, Siew Yee</creatorcontrib><creatorcontrib>Abell, Andrew D.</creatorcontrib><creatorcontrib>Law, Cheryl Suwen</creatorcontrib><creatorcontrib>Santos, Abel</creatorcontrib><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Khoa Nhu</au><au>Tran, Huong Nguyen Que</au><au>Lim, Siew Yee</au><au>Abell, Andrew D.</au><au>Law, Cheryl Suwen</au><au>Santos, Abel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Volatile Organic Compounds through Spectroscopic Signatures in Nanoporous Fabry–Pérot Optical Microcavities</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2024-05-15</date><risdate>2024</risdate><volume>16</volume><issue>19</issue><spage>24961</spage><epage>24975</epage><pages>24961-24975</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Increasingly complex modern gas-monitoring scenarios necessitate advanced sensing capabilities to detect and identify a diverse range of gases under varying conditions. There is a rising demand for individual sensors with multiple responses capable of recognizing gases, identifying components in mixtures, and providing stable responses. Inspired by gas sensors employing multivariable response principles, we develop a nanoporous anodic alumina high-order microcavity (NAA-HOμCV) gas sensor with multiple optical outputs for discriminative gas detection. The NAA-HOμCV architecture, formed by a Fabry–Pérot microcavity with distributed Bragg reflector (DBR) mirrors and an extended-length microcavity layer supporting multiple resonant modes, serves as an effective solid-state fingerprint platform for distinguishing volatile organic compound (VOC) gases. Our research reveals that the coupling strength of light into resonant modes and their evolution depend on the thickness of the DBR mirrors and the dimension of the microcavity layer, which allows us to optimize the discriminative sensing capability of the NAA-HOμCV sensor through structural engineering of the microcavity and photonic crystal mirrors. Gas-sensing experiments conducted on the NAA-HOμCV sensor demonstrate real-time discrimination between physiosorbed VOC gases (isopropanol, ethanol, or acetone) in reversible gas sensing. It also achieves superior ppb-level sensing in irreversible gas sensing of model silane molecules. Our study presents promising avenues for designing compact, cost-effective, and highly efficient gas sensors with tailored properties for discriminative gas detection.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.4c03804</doi><orcidid>https://orcid.org/0000-0002-8309-262X</orcidid><orcidid>https://orcid.org/0000-0002-5677-9039</orcidid><orcidid>https://orcid.org/0000-0002-0604-2629</orcidid><orcidid>https://orcid.org/0000-0002-3276-8052</orcidid><orcidid>https://orcid.org/0000-0002-5081-5684</orcidid><orcidid>https://orcid.org/0000-0001-5812-2463</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2024-05, Vol.16 (19), p.24961-24975 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_acs_journals_10_1021_acsami_4c03804 |
source | American Chemical Society Journals |
subjects | Functional Inorganic Materials and Devices |
title | Detection of Volatile Organic Compounds through Spectroscopic Signatures in Nanoporous Fabry–Pérot Optical Microcavities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A22%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Volatile%20Organic%20Compounds%20through%20Spectroscopic%20Signatures%20in%20Nanoporous%20Fabry%E2%80%93Pe%CC%81rot%20Optical%20Microcavities&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Tran,%20Khoa%20Nhu&rft.date=2024-05-15&rft.volume=16&rft.issue=19&rft.spage=24961&rft.epage=24975&rft.pages=24961-24975&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.4c03804&rft_dat=%3Cacs%3Ea19102564%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |