Sulfur-Doped Anatase TiO2 as an Anode for High-Performance Sodium-Ion Batteries

Sulfur-doped anatase TiO2 was prepared through a calcination conversion route for the first time. The grain size of TiO2 with S-doping obviously decreased after S-doping, manifesting that the introduction of S species could inhibit the crystal growth. Applied as an anode material for sodium-ion batt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2019-05, Vol.2 (5), p.3791-3797
Hauptverfasser: Zhang, Weifeng, Luo, Ningjing, Huang, Shuping, Wu, Nae-Lih, Wei, Mingdeng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3797
container_issue 5
container_start_page 3791
container_title ACS applied energy materials
container_volume 2
creator Zhang, Weifeng
Luo, Ningjing
Huang, Shuping
Wu, Nae-Lih
Wei, Mingdeng
description Sulfur-doped anatase TiO2 was prepared through a calcination conversion route for the first time. The grain size of TiO2 with S-doping obviously decreased after S-doping, manifesting that the introduction of S species could inhibit the crystal growth. Applied as an anode material for sodium-ion batteries, this material exhibited an impressive specific capacity of 174.4 mA h g–1 at a high current density of 10 C after 10 000 cycles. The remarkable performance results from the unique crystal structure of anatase TiO2 with bidirectional pore channels for sodium-ion intercalation, and S-doped TiO2 could increase the electronic conductivity, as well as enlarge the channel structure. Furthermore, density functional theory calculations manifested that the S-doping increases the volume of the lattice slightly, leading to the ease of insertion for sodium ions into anatase TiO2 and a reduced band gap with higher electronic conductivity. Therefore, S-doped TiO2 showed high reversible capacities and excellent long-term cycling performance.
doi_str_mv 10.1021/acsaem.9b00471
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsaem_9b00471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a844336549</sourcerecordid><originalsourceid>FETCH-LOGICAL-a256t-4a102bf159ff2a266774c2ff7d2889a97fed87a165371d455b29a84de65903bf3</originalsourceid><addsrcrecordid>eNpNkDtPwzAURi0EElXpyuwZycW-8SMeS4G2UqUgtczRTWxDqiZGcfL_CWoHpu_oG-7jEPIo-FJwEM9YJ_Tt0lacSyNuyAyUkYxbDbf_-J4sUjpxzoUVGqydkeIwnsPYs9f44x1ddThg8vTYFEAxUeymKjpPQ-zptvn6Zh--n7jFrvb0EF0ztmwXO_qCw-D7xqcHchfwnPzimnPy-f52XG_Zvtjs1qs9Q1B6YBKnq6sglA0BELQ2RtYQgnGQ5xatCd7lBoVWmRFOKlWBxVw6r5XlWRWyOXm6zJ0eL09x7LtpWyl4-WejvNgorzayX9hwUl0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sulfur-Doped Anatase TiO2 as an Anode for High-Performance Sodium-Ion Batteries</title><source>ACS Publications</source><creator>Zhang, Weifeng ; Luo, Ningjing ; Huang, Shuping ; Wu, Nae-Lih ; Wei, Mingdeng</creator><creatorcontrib>Zhang, Weifeng ; Luo, Ningjing ; Huang, Shuping ; Wu, Nae-Lih ; Wei, Mingdeng</creatorcontrib><description>Sulfur-doped anatase TiO2 was prepared through a calcination conversion route for the first time. The grain size of TiO2 with S-doping obviously decreased after S-doping, manifesting that the introduction of S species could inhibit the crystal growth. Applied as an anode material for sodium-ion batteries, this material exhibited an impressive specific capacity of 174.4 mA h g–1 at a high current density of 10 C after 10 000 cycles. The remarkable performance results from the unique crystal structure of anatase TiO2 with bidirectional pore channels for sodium-ion intercalation, and S-doped TiO2 could increase the electronic conductivity, as well as enlarge the channel structure. Furthermore, density functional theory calculations manifested that the S-doping increases the volume of the lattice slightly, leading to the ease of insertion for sodium ions into anatase TiO2 and a reduced band gap with higher electronic conductivity. Therefore, S-doped TiO2 showed high reversible capacities and excellent long-term cycling performance.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.9b00471</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2019-05, Vol.2 (5), p.3791-3797</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4815-1863 ; 0000-0001-6545-8790 ; 0000-0003-4516-7966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.9b00471$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.9b00471$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Zhang, Weifeng</creatorcontrib><creatorcontrib>Luo, Ningjing</creatorcontrib><creatorcontrib>Huang, Shuping</creatorcontrib><creatorcontrib>Wu, Nae-Lih</creatorcontrib><creatorcontrib>Wei, Mingdeng</creatorcontrib><title>Sulfur-Doped Anatase TiO2 as an Anode for High-Performance Sodium-Ion Batteries</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Sulfur-doped anatase TiO2 was prepared through a calcination conversion route for the first time. The grain size of TiO2 with S-doping obviously decreased after S-doping, manifesting that the introduction of S species could inhibit the crystal growth. Applied as an anode material for sodium-ion batteries, this material exhibited an impressive specific capacity of 174.4 mA h g–1 at a high current density of 10 C after 10 000 cycles. The remarkable performance results from the unique crystal structure of anatase TiO2 with bidirectional pore channels for sodium-ion intercalation, and S-doped TiO2 could increase the electronic conductivity, as well as enlarge the channel structure. Furthermore, density functional theory calculations manifested that the S-doping increases the volume of the lattice slightly, leading to the ease of insertion for sodium ions into anatase TiO2 and a reduced band gap with higher electronic conductivity. Therefore, S-doped TiO2 showed high reversible capacities and excellent long-term cycling performance.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkDtPwzAURi0EElXpyuwZycW-8SMeS4G2UqUgtczRTWxDqiZGcfL_CWoHpu_oG-7jEPIo-FJwEM9YJ_Tt0lacSyNuyAyUkYxbDbf_-J4sUjpxzoUVGqydkeIwnsPYs9f44x1ddThg8vTYFEAxUeymKjpPQ-zptvn6Zh--n7jFrvb0EF0ztmwXO_qCw-D7xqcHchfwnPzimnPy-f52XG_Zvtjs1qs9Q1B6YBKnq6sglA0BELQ2RtYQgnGQ5xatCd7lBoVWmRFOKlWBxVw6r5XlWRWyOXm6zJ0eL09x7LtpWyl4-WejvNgorzayX9hwUl0</recordid><startdate>20190528</startdate><enddate>20190528</enddate><creator>Zhang, Weifeng</creator><creator>Luo, Ningjing</creator><creator>Huang, Shuping</creator><creator>Wu, Nae-Lih</creator><creator>Wei, Mingdeng</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-4815-1863</orcidid><orcidid>https://orcid.org/0000-0001-6545-8790</orcidid><orcidid>https://orcid.org/0000-0003-4516-7966</orcidid></search><sort><creationdate>20190528</creationdate><title>Sulfur-Doped Anatase TiO2 as an Anode for High-Performance Sodium-Ion Batteries</title><author>Zhang, Weifeng ; Luo, Ningjing ; Huang, Shuping ; Wu, Nae-Lih ; Wei, Mingdeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a256t-4a102bf159ff2a266774c2ff7d2889a97fed87a165371d455b29a84de65903bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Weifeng</creatorcontrib><creatorcontrib>Luo, Ningjing</creatorcontrib><creatorcontrib>Huang, Shuping</creatorcontrib><creatorcontrib>Wu, Nae-Lih</creatorcontrib><creatorcontrib>Wei, Mingdeng</creatorcontrib><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Weifeng</au><au>Luo, Ningjing</au><au>Huang, Shuping</au><au>Wu, Nae-Lih</au><au>Wei, Mingdeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfur-Doped Anatase TiO2 as an Anode for High-Performance Sodium-Ion Batteries</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2019-05-28</date><risdate>2019</risdate><volume>2</volume><issue>5</issue><spage>3791</spage><epage>3797</epage><pages>3791-3797</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Sulfur-doped anatase TiO2 was prepared through a calcination conversion route for the first time. The grain size of TiO2 with S-doping obviously decreased after S-doping, manifesting that the introduction of S species could inhibit the crystal growth. Applied as an anode material for sodium-ion batteries, this material exhibited an impressive specific capacity of 174.4 mA h g–1 at a high current density of 10 C after 10 000 cycles. The remarkable performance results from the unique crystal structure of anatase TiO2 with bidirectional pore channels for sodium-ion intercalation, and S-doped TiO2 could increase the electronic conductivity, as well as enlarge the channel structure. Furthermore, density functional theory calculations manifested that the S-doping increases the volume of the lattice slightly, leading to the ease of insertion for sodium ions into anatase TiO2 and a reduced band gap with higher electronic conductivity. Therefore, S-doped TiO2 showed high reversible capacities and excellent long-term cycling performance.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.9b00471</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4815-1863</orcidid><orcidid>https://orcid.org/0000-0001-6545-8790</orcidid><orcidid>https://orcid.org/0000-0003-4516-7966</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2019-05, Vol.2 (5), p.3791-3797
issn 2574-0962
2574-0962
language eng
recordid cdi_acs_journals_10_1021_acsaem_9b00471
source ACS Publications
title Sulfur-Doped Anatase TiO2 as an Anode for High-Performance Sodium-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A21%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfur-Doped%20Anatase%20TiO2%20as%20an%20Anode%20for%20High-Performance%20Sodium-Ion%20Batteries&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Zhang,%20Weifeng&rft.date=2019-05-28&rft.volume=2&rft.issue=5&rft.spage=3791&rft.epage=3797&rft.pages=3791-3797&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.9b00471&rft_dat=%3Cacs%3Ea844336549%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true