Quantification of Surface Oxygen Depletion and Solid Carbonate Evolution on the First Cycle of LiNi0.6Mn0.2Co0.2O2 Electrodes

By combining differential electrochemical mass spectrometry (DEMS) with titrations of electrochemically modified LiNi0.6Mn0.2Co0.2O2 (NMC622), we find that coinciding with the onset of CO2 evolution above ∼3.9 V vs Li/Li+ anodic cutoff potentials are several phenomena: (i) degradation of the native...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2019-05, Vol.2 (5), p.3762-3772
Hauptverfasser: Renfrew, Sara E, McCloskey, Bryan D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3772
container_issue 5
container_start_page 3762
container_title ACS applied energy materials
container_volume 2
creator Renfrew, Sara E
McCloskey, Bryan D
description By combining differential electrochemical mass spectrometry (DEMS) with titrations of electrochemically modified LiNi0.6Mn0.2Co0.2O2 (NMC622), we find that coinciding with the onset of CO2 evolution above ∼3.9 V vs Li/Li+ anodic cutoff potentials are several phenomena: (i) degradation of the native surface Li2CO3, (ii) degradation of the electrolyte evolving CO2, (iii) formation of a film of carbonate-like electrolyte degradation products on charge which are (iv) largely reduced and desorb on discharge, (v) near-surface oxygen charge compensation during charge, and (vi) irreversible formation of a transition metal-reduced, oxygen-depleted layer on the surface of NMC622 that persists after discharge. CO2 stemming from electrolyte degradation and Li2CO3 decomposition begins to evolve above ∼3.9 V on charge, discharge, and rest and results from a corrosion-like process involving NMC622, which appears to be distinct from the process that evolves O2. As measured using titrations that quantify surface peroxo-like character, the disordered surface layer that forms during cycling extends deeper into the oxide bulk than would be anticipated simply from the total O2 evolved. The analyses we report here could be used to quantify the role of the electrolyte, surface contaminants, and transition metal oxide composition on outgassing, electrolyte decomposition, and transition metal oxide surface degradation.
doi_str_mv 10.1021/acsaem.9b00459
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsaem_9b00459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a225824737</sourcerecordid><originalsourceid>FETCH-LOGICAL-a190t-445f57ff788f24f58c0117e819676f23194ac2c357d9cdb854e4cd042a33d6813</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4MoOOaunnMWWl_SpG2OUjcVqkWm55Lmh2bURNpU3MH_3c3t4OW9B1--nwcfhC4JpAQouZZqlOYjFR0A4-IEzSgvWAIip6f_7nO0GMcNABBBcirEDP08T9JHZ52S0QWPg8XrabBSGdx8b9-Mx7fmszd_mfQar0PvNK7k0AUvo8HLr9BPh6bH8d3glRvGiKut6s0eVrsnB2n-6CGlVdiNhuJlb1QcgjbjBTqzsh_N4rjn6HW1fKnuk7q5e6hu6kQSATFhjFteWFuUpaXM8lIBIYUpiciL3NKMCCYVVRkvtFC6KzkzTGlgVGaZzkuSzdHVgbvT1G7CNPjdt5ZAu3fXHty1R3fZL20IYgc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantification of Surface Oxygen Depletion and Solid Carbonate Evolution on the First Cycle of LiNi0.6Mn0.2Co0.2O2 Electrodes</title><source>ACS Publications</source><creator>Renfrew, Sara E ; McCloskey, Bryan D</creator><creatorcontrib>Renfrew, Sara E ; McCloskey, Bryan D</creatorcontrib><description>By combining differential electrochemical mass spectrometry (DEMS) with titrations of electrochemically modified LiNi0.6Mn0.2Co0.2O2 (NMC622), we find that coinciding with the onset of CO2 evolution above ∼3.9 V vs Li/Li+ anodic cutoff potentials are several phenomena: (i) degradation of the native surface Li2CO3, (ii) degradation of the electrolyte evolving CO2, (iii) formation of a film of carbonate-like electrolyte degradation products on charge which are (iv) largely reduced and desorb on discharge, (v) near-surface oxygen charge compensation during charge, and (vi) irreversible formation of a transition metal-reduced, oxygen-depleted layer on the surface of NMC622 that persists after discharge. CO2 stemming from electrolyte degradation and Li2CO3 decomposition begins to evolve above ∼3.9 V on charge, discharge, and rest and results from a corrosion-like process involving NMC622, which appears to be distinct from the process that evolves O2. As measured using titrations that quantify surface peroxo-like character, the disordered surface layer that forms during cycling extends deeper into the oxide bulk than would be anticipated simply from the total O2 evolved. The analyses we report here could be used to quantify the role of the electrolyte, surface contaminants, and transition metal oxide composition on outgassing, electrolyte decomposition, and transition metal oxide surface degradation.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.9b00459</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2019-05, Vol.2 (5), p.3762-3772</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6599-2336 ; 0000-0003-0445-2963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.9b00459$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.9b00459$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Renfrew, Sara E</creatorcontrib><creatorcontrib>McCloskey, Bryan D</creatorcontrib><title>Quantification of Surface Oxygen Depletion and Solid Carbonate Evolution on the First Cycle of LiNi0.6Mn0.2Co0.2O2 Electrodes</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>By combining differential electrochemical mass spectrometry (DEMS) with titrations of electrochemically modified LiNi0.6Mn0.2Co0.2O2 (NMC622), we find that coinciding with the onset of CO2 evolution above ∼3.9 V vs Li/Li+ anodic cutoff potentials are several phenomena: (i) degradation of the native surface Li2CO3, (ii) degradation of the electrolyte evolving CO2, (iii) formation of a film of carbonate-like electrolyte degradation products on charge which are (iv) largely reduced and desorb on discharge, (v) near-surface oxygen charge compensation during charge, and (vi) irreversible formation of a transition metal-reduced, oxygen-depleted layer on the surface of NMC622 that persists after discharge. CO2 stemming from electrolyte degradation and Li2CO3 decomposition begins to evolve above ∼3.9 V on charge, discharge, and rest and results from a corrosion-like process involving NMC622, which appears to be distinct from the process that evolves O2. As measured using titrations that quantify surface peroxo-like character, the disordered surface layer that forms during cycling extends deeper into the oxide bulk than would be anticipated simply from the total O2 evolved. The analyses we report here could be used to quantify the role of the electrolyte, surface contaminants, and transition metal oxide composition on outgassing, electrolyte decomposition, and transition metal oxide surface degradation.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkM9LwzAUx4MoOOaunnMWWl_SpG2OUjcVqkWm55Lmh2bURNpU3MH_3c3t4OW9B1--nwcfhC4JpAQouZZqlOYjFR0A4-IEzSgvWAIip6f_7nO0GMcNABBBcirEDP08T9JHZ52S0QWPg8XrabBSGdx8b9-Mx7fmszd_mfQar0PvNK7k0AUvo8HLr9BPh6bH8d3glRvGiKut6s0eVrsnB2n-6CGlVdiNhuJlb1QcgjbjBTqzsh_N4rjn6HW1fKnuk7q5e6hu6kQSATFhjFteWFuUpaXM8lIBIYUpiciL3NKMCCYVVRkvtFC6KzkzTGlgVGaZzkuSzdHVgbvT1G7CNPjdt5ZAu3fXHty1R3fZL20IYgc</recordid><startdate>20190528</startdate><enddate>20190528</enddate><creator>Renfrew, Sara E</creator><creator>McCloskey, Bryan D</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-6599-2336</orcidid><orcidid>https://orcid.org/0000-0003-0445-2963</orcidid></search><sort><creationdate>20190528</creationdate><title>Quantification of Surface Oxygen Depletion and Solid Carbonate Evolution on the First Cycle of LiNi0.6Mn0.2Co0.2O2 Electrodes</title><author>Renfrew, Sara E ; McCloskey, Bryan D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a190t-445f57ff788f24f58c0117e819676f23194ac2c357d9cdb854e4cd042a33d6813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renfrew, Sara E</creatorcontrib><creatorcontrib>McCloskey, Bryan D</creatorcontrib><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renfrew, Sara E</au><au>McCloskey, Bryan D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of Surface Oxygen Depletion and Solid Carbonate Evolution on the First Cycle of LiNi0.6Mn0.2Co0.2O2 Electrodes</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2019-05-28</date><risdate>2019</risdate><volume>2</volume><issue>5</issue><spage>3762</spage><epage>3772</epage><pages>3762-3772</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>By combining differential electrochemical mass spectrometry (DEMS) with titrations of electrochemically modified LiNi0.6Mn0.2Co0.2O2 (NMC622), we find that coinciding with the onset of CO2 evolution above ∼3.9 V vs Li/Li+ anodic cutoff potentials are several phenomena: (i) degradation of the native surface Li2CO3, (ii) degradation of the electrolyte evolving CO2, (iii) formation of a film of carbonate-like electrolyte degradation products on charge which are (iv) largely reduced and desorb on discharge, (v) near-surface oxygen charge compensation during charge, and (vi) irreversible formation of a transition metal-reduced, oxygen-depleted layer on the surface of NMC622 that persists after discharge. CO2 stemming from electrolyte degradation and Li2CO3 decomposition begins to evolve above ∼3.9 V on charge, discharge, and rest and results from a corrosion-like process involving NMC622, which appears to be distinct from the process that evolves O2. As measured using titrations that quantify surface peroxo-like character, the disordered surface layer that forms during cycling extends deeper into the oxide bulk than would be anticipated simply from the total O2 evolved. The analyses we report here could be used to quantify the role of the electrolyte, surface contaminants, and transition metal oxide composition on outgassing, electrolyte decomposition, and transition metal oxide surface degradation.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.9b00459</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6599-2336</orcidid><orcidid>https://orcid.org/0000-0003-0445-2963</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2019-05, Vol.2 (5), p.3762-3772
issn 2574-0962
2574-0962
language eng
recordid cdi_acs_journals_10_1021_acsaem_9b00459
source ACS Publications
title Quantification of Surface Oxygen Depletion and Solid Carbonate Evolution on the First Cycle of LiNi0.6Mn0.2Co0.2O2 Electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A14%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20Surface%20Oxygen%20Depletion%20and%20Solid%20Carbonate%20Evolution%20on%20the%20First%20Cycle%20of%20LiNi0.6Mn0.2Co0.2O2%20Electrodes&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Renfrew,%20Sara%20E&rft.date=2019-05-28&rft.volume=2&rft.issue=5&rft.spage=3762&rft.epage=3772&rft.pages=3762-3772&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.9b00459&rft_dat=%3Cacs%3Ea225824737%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true