Directing Mn0.2Cd0.8S/Co3O4 np Junctions for Highly Efficient Visible Light Hydrogen Production

The conversion of solar energy into hydrogen (H2) through photocatalysis technology has been considered to be one of the most promising ways to alleviate the energy crisis. However, achieving efficient H2 production is still a big challenge due to the rapid recombination of photogenerated carriers....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2024-09, Vol.7 (18), p.7818-7828
Hauptverfasser: Huang, Yi-Fu, Ran, Mao-Jin, Li, Zhi-Rong, Yuan, Man-Man, Shen, Ting-Ting, Liu, Kai, Jiang, Ze-Yu, Khojiev, Shokir, Hu, Zhi-Yi, Liu, Jing, Chen, Li-Hua, Li, Yu, Su, Bao-Lian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7828
container_issue 18
container_start_page 7818
container_title ACS applied energy materials
container_volume 7
creator Huang, Yi-Fu
Ran, Mao-Jin
Li, Zhi-Rong
Yuan, Man-Man
Shen, Ting-Ting
Liu, Kai
Jiang, Ze-Yu
Khojiev, Shokir
Hu, Zhi-Yi
Liu, Jing
Chen, Li-Hua
Li, Yu
Su, Bao-Lian
description The conversion of solar energy into hydrogen (H2) through photocatalysis technology has been considered to be one of the most promising ways to alleviate the energy crisis. However, achieving efficient H2 production is still a big challenge due to the rapid recombination of photogenerated carriers. In this work, we direct Mn0.2Cd0.8S/Co3O4 np junctions via in situ growing p-type Co3O4 nanoparticles on the surface of n-type Mn0.2Cd0.8S nanorods for photocatalytic hydrogen production. Compared to ex-situ-grown samples, the in-situ-grown samples construct many more channels for photogenerated charge carrier transfer via the np junctions and built-in electric field to promote their separation and migration, leading to enhanced photocatalytic hydrogen production. The results show that Mn0.2Cd0.8S/Co3O4-20 exhibits a H2 production rate of 26.98 mmol h–1 g–1 under visible light, which is about 2.71 times higher than that of pure Mn0.2Cd0.8S. In addition, the apparent quantum efficiency at 450 nm of Mn0.2Cd0.8S/Co3O4-20 reaches 14.0%. Our work here provides insights into constructing heterojunctions to facilitate photogenerated charge separation and transfer for photocatalysis and photovoltaic applications.
doi_str_mv 10.1021/acsaem.4c01395
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsaem_4c01395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>e00347692</sourcerecordid><originalsourceid>FETCH-LOGICAL-a120t-573ddd27d6534d6b58feacda3db06b36e0a4dac149ea4f4565e522e0bbbc50a83</originalsourceid><addsrcrecordid>eNpNkMtLw0AYxBdRsNRePe9ZSPrtM8lRYjVKpIKPa9hX4pa6kWxy6H9vtD14moFhZuCH0DWBlAAla2Wicl8pN0BYIc7QgoqMJ1BIev7PX6JVjDsAIAWRtCgWqLnzgzOjDx1-DpDS0kKav67Lnm05Dt_4aQpz2oeI237Ale8-9we8aVtvvAsj_vDR673D9RyMuDrYoe9cwC9Db6e_3hW6aNU-utVJl-j9fvNWVkm9fXgsb-tEEQpjIjJmraWZlYJxK7XIW6eMVcxqkJpJB4pbZQgvnOItF1I4QakDrbURoHK2RDfH3RlEs-unIcxvDYHml05zpNOc6LAf13ZY9g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Directing Mn0.2Cd0.8S/Co3O4 np Junctions for Highly Efficient Visible Light Hydrogen Production</title><source>ACS Publications</source><creator>Huang, Yi-Fu ; Ran, Mao-Jin ; Li, Zhi-Rong ; Yuan, Man-Man ; Shen, Ting-Ting ; Liu, Kai ; Jiang, Ze-Yu ; Khojiev, Shokir ; Hu, Zhi-Yi ; Liu, Jing ; Chen, Li-Hua ; Li, Yu ; Su, Bao-Lian</creator><creatorcontrib>Huang, Yi-Fu ; Ran, Mao-Jin ; Li, Zhi-Rong ; Yuan, Man-Man ; Shen, Ting-Ting ; Liu, Kai ; Jiang, Ze-Yu ; Khojiev, Shokir ; Hu, Zhi-Yi ; Liu, Jing ; Chen, Li-Hua ; Li, Yu ; Su, Bao-Lian</creatorcontrib><description>The conversion of solar energy into hydrogen (H2) through photocatalysis technology has been considered to be one of the most promising ways to alleviate the energy crisis. However, achieving efficient H2 production is still a big challenge due to the rapid recombination of photogenerated carriers. In this work, we direct Mn0.2Cd0.8S/Co3O4 np junctions via in situ growing p-type Co3O4 nanoparticles on the surface of n-type Mn0.2Cd0.8S nanorods for photocatalytic hydrogen production. Compared to ex-situ-grown samples, the in-situ-grown samples construct many more channels for photogenerated charge carrier transfer via the np junctions and built-in electric field to promote their separation and migration, leading to enhanced photocatalytic hydrogen production. The results show that Mn0.2Cd0.8S/Co3O4-20 exhibits a H2 production rate of 26.98 mmol h–1 g–1 under visible light, which is about 2.71 times higher than that of pure Mn0.2Cd0.8S. In addition, the apparent quantum efficiency at 450 nm of Mn0.2Cd0.8S/Co3O4-20 reaches 14.0%. Our work here provides insights into constructing heterojunctions to facilitate photogenerated charge separation and transfer for photocatalysis and photovoltaic applications.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.4c01395</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2024-09, Vol.7 (18), p.7818-7828</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9886-2789 ; 0000-0002-1282-5312 ; 0000-0003-1371-8778 ; 0000-0001-8474-0652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.4c01395$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.4c01395$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,27081,27929,27930,56743,56793</link.rule.ids></links><search><creatorcontrib>Huang, Yi-Fu</creatorcontrib><creatorcontrib>Ran, Mao-Jin</creatorcontrib><creatorcontrib>Li, Zhi-Rong</creatorcontrib><creatorcontrib>Yuan, Man-Man</creatorcontrib><creatorcontrib>Shen, Ting-Ting</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Jiang, Ze-Yu</creatorcontrib><creatorcontrib>Khojiev, Shokir</creatorcontrib><creatorcontrib>Hu, Zhi-Yi</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Chen, Li-Hua</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Su, Bao-Lian</creatorcontrib><title>Directing Mn0.2Cd0.8S/Co3O4 np Junctions for Highly Efficient Visible Light Hydrogen Production</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>The conversion of solar energy into hydrogen (H2) through photocatalysis technology has been considered to be one of the most promising ways to alleviate the energy crisis. However, achieving efficient H2 production is still a big challenge due to the rapid recombination of photogenerated carriers. In this work, we direct Mn0.2Cd0.8S/Co3O4 np junctions via in situ growing p-type Co3O4 nanoparticles on the surface of n-type Mn0.2Cd0.8S nanorods for photocatalytic hydrogen production. Compared to ex-situ-grown samples, the in-situ-grown samples construct many more channels for photogenerated charge carrier transfer via the np junctions and built-in electric field to promote their separation and migration, leading to enhanced photocatalytic hydrogen production. The results show that Mn0.2Cd0.8S/Co3O4-20 exhibits a H2 production rate of 26.98 mmol h–1 g–1 under visible light, which is about 2.71 times higher than that of pure Mn0.2Cd0.8S. In addition, the apparent quantum efficiency at 450 nm of Mn0.2Cd0.8S/Co3O4-20 reaches 14.0%. Our work here provides insights into constructing heterojunctions to facilitate photogenerated charge separation and transfer for photocatalysis and photovoltaic applications.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkMtLw0AYxBdRsNRePe9ZSPrtM8lRYjVKpIKPa9hX4pa6kWxy6H9vtD14moFhZuCH0DWBlAAla2Wicl8pN0BYIc7QgoqMJ1BIev7PX6JVjDsAIAWRtCgWqLnzgzOjDx1-DpDS0kKav67Lnm05Dt_4aQpz2oeI237Ale8-9we8aVtvvAsj_vDR673D9RyMuDrYoe9cwC9Db6e_3hW6aNU-utVJl-j9fvNWVkm9fXgsb-tEEQpjIjJmraWZlYJxK7XIW6eMVcxqkJpJB4pbZQgvnOItF1I4QakDrbURoHK2RDfH3RlEs-unIcxvDYHml05zpNOc6LAf13ZY9g</recordid><startdate>20240923</startdate><enddate>20240923</enddate><creator>Huang, Yi-Fu</creator><creator>Ran, Mao-Jin</creator><creator>Li, Zhi-Rong</creator><creator>Yuan, Man-Man</creator><creator>Shen, Ting-Ting</creator><creator>Liu, Kai</creator><creator>Jiang, Ze-Yu</creator><creator>Khojiev, Shokir</creator><creator>Hu, Zhi-Yi</creator><creator>Liu, Jing</creator><creator>Chen, Li-Hua</creator><creator>Li, Yu</creator><creator>Su, Bao-Lian</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-9886-2789</orcidid><orcidid>https://orcid.org/0000-0002-1282-5312</orcidid><orcidid>https://orcid.org/0000-0003-1371-8778</orcidid><orcidid>https://orcid.org/0000-0001-8474-0652</orcidid></search><sort><creationdate>20240923</creationdate><title>Directing Mn0.2Cd0.8S/Co3O4 np Junctions for Highly Efficient Visible Light Hydrogen Production</title><author>Huang, Yi-Fu ; Ran, Mao-Jin ; Li, Zhi-Rong ; Yuan, Man-Man ; Shen, Ting-Ting ; Liu, Kai ; Jiang, Ze-Yu ; Khojiev, Shokir ; Hu, Zhi-Yi ; Liu, Jing ; Chen, Li-Hua ; Li, Yu ; Su, Bao-Lian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a120t-573ddd27d6534d6b58feacda3db06b36e0a4dac149ea4f4565e522e0bbbc50a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yi-Fu</creatorcontrib><creatorcontrib>Ran, Mao-Jin</creatorcontrib><creatorcontrib>Li, Zhi-Rong</creatorcontrib><creatorcontrib>Yuan, Man-Man</creatorcontrib><creatorcontrib>Shen, Ting-Ting</creatorcontrib><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Jiang, Ze-Yu</creatorcontrib><creatorcontrib>Khojiev, Shokir</creatorcontrib><creatorcontrib>Hu, Zhi-Yi</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Chen, Li-Hua</creatorcontrib><creatorcontrib>Li, Yu</creatorcontrib><creatorcontrib>Su, Bao-Lian</creatorcontrib><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yi-Fu</au><au>Ran, Mao-Jin</au><au>Li, Zhi-Rong</au><au>Yuan, Man-Man</au><au>Shen, Ting-Ting</au><au>Liu, Kai</au><au>Jiang, Ze-Yu</au><au>Khojiev, Shokir</au><au>Hu, Zhi-Yi</au><au>Liu, Jing</au><au>Chen, Li-Hua</au><au>Li, Yu</au><au>Su, Bao-Lian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directing Mn0.2Cd0.8S/Co3O4 np Junctions for Highly Efficient Visible Light Hydrogen Production</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2024-09-23</date><risdate>2024</risdate><volume>7</volume><issue>18</issue><spage>7818</spage><epage>7828</epage><pages>7818-7828</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>The conversion of solar energy into hydrogen (H2) through photocatalysis technology has been considered to be one of the most promising ways to alleviate the energy crisis. However, achieving efficient H2 production is still a big challenge due to the rapid recombination of photogenerated carriers. In this work, we direct Mn0.2Cd0.8S/Co3O4 np junctions via in situ growing p-type Co3O4 nanoparticles on the surface of n-type Mn0.2Cd0.8S nanorods for photocatalytic hydrogen production. Compared to ex-situ-grown samples, the in-situ-grown samples construct many more channels for photogenerated charge carrier transfer via the np junctions and built-in electric field to promote their separation and migration, leading to enhanced photocatalytic hydrogen production. The results show that Mn0.2Cd0.8S/Co3O4-20 exhibits a H2 production rate of 26.98 mmol h–1 g–1 under visible light, which is about 2.71 times higher than that of pure Mn0.2Cd0.8S. In addition, the apparent quantum efficiency at 450 nm of Mn0.2Cd0.8S/Co3O4-20 reaches 14.0%. Our work here provides insights into constructing heterojunctions to facilitate photogenerated charge separation and transfer for photocatalysis and photovoltaic applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.4c01395</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9886-2789</orcidid><orcidid>https://orcid.org/0000-0002-1282-5312</orcidid><orcidid>https://orcid.org/0000-0003-1371-8778</orcidid><orcidid>https://orcid.org/0000-0001-8474-0652</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2024-09, Vol.7 (18), p.7818-7828
issn 2574-0962
2574-0962
language eng
recordid cdi_acs_journals_10_1021_acsaem_4c01395
source ACS Publications
title Directing Mn0.2Cd0.8S/Co3O4 np Junctions for Highly Efficient Visible Light Hydrogen Production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T18%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directing%20Mn0.2Cd0.8S/Co3O4%20np%20Junctions%20for%20Highly%20Efficient%20Visible%20Light%20Hydrogen%20Production&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Huang,%20Yi-Fu&rft.date=2024-09-23&rft.volume=7&rft.issue=18&rft.spage=7818&rft.epage=7828&rft.pages=7818-7828&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.4c01395&rft_dat=%3Cacs%3Ee00347692%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true