Toward the Understanding of the Structure–Activity Correlation in Single-Site Mn Covalent Organic Frameworks for Electrocatalytic CO2 Reduction

The encapsulation of organometallic complexes into reticular covalent organic frameworks (COFs) represents an effective strategy for the immobilization of molecular electrocatalysts. In particular, well-defined polypyridyl Mn sites embedded into a crystalline COF backbone (COF bpyMn ) were found to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2024-02, Vol.7 (3), p.1348-1357
Hauptverfasser: Dubed Bandomo, Geyla C., Franco, Federico, Liu, Changwei, Mondal, Suvendu Sekhar, Gallo, Angelo, Nervi, Carlo, Lloret-Fillol, Julio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1357
container_issue 3
container_start_page 1348
container_title ACS applied energy materials
container_volume 7
creator Dubed Bandomo, Geyla C.
Franco, Federico
Liu, Changwei
Mondal, Suvendu Sekhar
Gallo, Angelo
Nervi, Carlo
Lloret-Fillol, Julio
description The encapsulation of organometallic complexes into reticular covalent organic frameworks (COFs) represents an effective strategy for the immobilization of molecular electrocatalysts. In particular, well-defined polypyridyl Mn sites embedded into a crystalline COF backbone (COF bpyMn ) were found to exhibit higher selectivity and activity toward electrochemical CO2 reduction compared to the parent molecular derivative noncovalently immobilized on carbon electrodes. In situ mechanistic studies revealed that the electronic and steric features of the reticular framework strongly affect the redox mechanism of the Mn sites, stabilizing the formation of a mononuclear Mn­(I) radical anion intermediate over the most common off-cycle Mn0–Mn0 dimer. Herein, we report the study of a Mn-based COF (COF PTMn ), introducing a larger phenanthroline building block, to explore how tuning the structural and electronic properties of the lattice may affect the catalytic CO2 reduction performance and the mechanism at the molecular level of the reticular system. The Mn sites encapsulated into the reticular COF PTMn exhibited a remarkable enhancement in the intrinsic catalytic CO2 reduction activity at near-neutral pH compared to that of the corresponding noncovalently immobilized molecular derivative. On the other hand, the poor crystallinity and porosity of COF PTMn , likely introduced by the lattice expansion and spatial dynamics of the phenanthroline linker, were found to limit its catalytic performances compared to those of the bipyridyl COF bpyMn analogue. ATR-IR spectroelectrochemistry revealed that the higher spatial mobility of the Mn sites does not completely suppress the Mn0–Mn0 dimerization upon the electrochemical reduction of the Mn sites at the COF bpyMn . This work highlights the positive role of the reticular structure of the material in enhancing its catalytic activity versus that of its molecular counterpart and provides useful hints for the future design and development of efficient reticular frameworks for electrocatalytic applications.
doi_str_mv 10.1021/acsaem.3c03117
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsaem_3c03117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b378105956</sourcerecordid><originalsourceid>FETCH-LOGICAL-a190t-c91afe63d2499c5119b3005d12f2be27d5dc3bc322c62c8f559633eca7c446423</originalsourceid><addsrcrecordid>eNpNkM1KAzEUhYMoWGq3rrMWpuZnfsyyDK0KlYJt10N6c6emThPIpC3d-QriG_okjrYLV-dyzuUc-Ai55WzImeD3GlqN26EEJjkvLkhPZEWaMJWLy3_3NRm07YYxxhXPhVI98rnwBx0MjW9Il85gaKN2xro19fWfOY9hB3EX8PvjawTR7m080tKHgI2O1jtqHZ13_w0mcxuRvrgu3esGXaSzsNbOAp0EvcWDD-8trX2g4wYhBg866uYYu7ycCfqKptvpCm_IVa2bFgdn7ZPlZLwon5Lp7PG5HE0TzRWLCSiua8ylEalSkHGuVpKxzHBRixWKwmQG5AqkEJALeKizTOVSIugC0jRPheyTu1Nvh67a-F1w3VrFWfXLszrxrM485Q-kEG1e</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Toward the Understanding of the Structure–Activity Correlation in Single-Site Mn Covalent Organic Frameworks for Electrocatalytic CO2 Reduction</title><source>ACS Publications</source><creator>Dubed Bandomo, Geyla C. ; Franco, Federico ; Liu, Changwei ; Mondal, Suvendu Sekhar ; Gallo, Angelo ; Nervi, Carlo ; Lloret-Fillol, Julio</creator><creatorcontrib>Dubed Bandomo, Geyla C. ; Franco, Federico ; Liu, Changwei ; Mondal, Suvendu Sekhar ; Gallo, Angelo ; Nervi, Carlo ; Lloret-Fillol, Julio</creatorcontrib><description>The encapsulation of organometallic complexes into reticular covalent organic frameworks (COFs) represents an effective strategy for the immobilization of molecular electrocatalysts. In particular, well-defined polypyridyl Mn sites embedded into a crystalline COF backbone (COF bpyMn ) were found to exhibit higher selectivity and activity toward electrochemical CO2 reduction compared to the parent molecular derivative noncovalently immobilized on carbon electrodes. In situ mechanistic studies revealed that the electronic and steric features of the reticular framework strongly affect the redox mechanism of the Mn sites, stabilizing the formation of a mononuclear Mn­(I) radical anion intermediate over the most common off-cycle Mn0–Mn0 dimer. Herein, we report the study of a Mn-based COF (COF PTMn ), introducing a larger phenanthroline building block, to explore how tuning the structural and electronic properties of the lattice may affect the catalytic CO2 reduction performance and the mechanism at the molecular level of the reticular system. The Mn sites encapsulated into the reticular COF PTMn exhibited a remarkable enhancement in the intrinsic catalytic CO2 reduction activity at near-neutral pH compared to that of the corresponding noncovalently immobilized molecular derivative. On the other hand, the poor crystallinity and porosity of COF PTMn , likely introduced by the lattice expansion and spatial dynamics of the phenanthroline linker, were found to limit its catalytic performances compared to those of the bipyridyl COF bpyMn analogue. ATR-IR spectroelectrochemistry revealed that the higher spatial mobility of the Mn sites does not completely suppress the Mn0–Mn0 dimerization upon the electrochemical reduction of the Mn sites at the COF bpyMn . This work highlights the positive role of the reticular structure of the material in enhancing its catalytic activity versus that of its molecular counterpart and provides useful hints for the future design and development of efficient reticular frameworks for electrocatalytic applications.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.3c03117</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2024-02, Vol.7 (3), p.1348-1357</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9778-4822 ; 0000-0002-3712-7369 ; 0000-0002-4240-9512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.3c03117$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.3c03117$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Dubed Bandomo, Geyla C.</creatorcontrib><creatorcontrib>Franco, Federico</creatorcontrib><creatorcontrib>Liu, Changwei</creatorcontrib><creatorcontrib>Mondal, Suvendu Sekhar</creatorcontrib><creatorcontrib>Gallo, Angelo</creatorcontrib><creatorcontrib>Nervi, Carlo</creatorcontrib><creatorcontrib>Lloret-Fillol, Julio</creatorcontrib><title>Toward the Understanding of the Structure–Activity Correlation in Single-Site Mn Covalent Organic Frameworks for Electrocatalytic CO2 Reduction</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>The encapsulation of organometallic complexes into reticular covalent organic frameworks (COFs) represents an effective strategy for the immobilization of molecular electrocatalysts. In particular, well-defined polypyridyl Mn sites embedded into a crystalline COF backbone (COF bpyMn ) were found to exhibit higher selectivity and activity toward electrochemical CO2 reduction compared to the parent molecular derivative noncovalently immobilized on carbon electrodes. In situ mechanistic studies revealed that the electronic and steric features of the reticular framework strongly affect the redox mechanism of the Mn sites, stabilizing the formation of a mononuclear Mn­(I) radical anion intermediate over the most common off-cycle Mn0–Mn0 dimer. Herein, we report the study of a Mn-based COF (COF PTMn ), introducing a larger phenanthroline building block, to explore how tuning the structural and electronic properties of the lattice may affect the catalytic CO2 reduction performance and the mechanism at the molecular level of the reticular system. The Mn sites encapsulated into the reticular COF PTMn exhibited a remarkable enhancement in the intrinsic catalytic CO2 reduction activity at near-neutral pH compared to that of the corresponding noncovalently immobilized molecular derivative. On the other hand, the poor crystallinity and porosity of COF PTMn , likely introduced by the lattice expansion and spatial dynamics of the phenanthroline linker, were found to limit its catalytic performances compared to those of the bipyridyl COF bpyMn analogue. ATR-IR spectroelectrochemistry revealed that the higher spatial mobility of the Mn sites does not completely suppress the Mn0–Mn0 dimerization upon the electrochemical reduction of the Mn sites at the COF bpyMn . This work highlights the positive role of the reticular structure of the material in enhancing its catalytic activity versus that of its molecular counterpart and provides useful hints for the future design and development of efficient reticular frameworks for electrocatalytic applications.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkM1KAzEUhYMoWGq3rrMWpuZnfsyyDK0KlYJt10N6c6emThPIpC3d-QriG_okjrYLV-dyzuUc-Ai55WzImeD3GlqN26EEJjkvLkhPZEWaMJWLy3_3NRm07YYxxhXPhVI98rnwBx0MjW9Il85gaKN2xro19fWfOY9hB3EX8PvjawTR7m080tKHgI2O1jtqHZ13_w0mcxuRvrgu3esGXaSzsNbOAp0EvcWDD-8trX2g4wYhBg866uYYu7ycCfqKptvpCm_IVa2bFgdn7ZPlZLwon5Lp7PG5HE0TzRWLCSiua8ylEalSkHGuVpKxzHBRixWKwmQG5AqkEJALeKizTOVSIugC0jRPheyTu1Nvh67a-F1w3VrFWfXLszrxrM485Q-kEG1e</recordid><startdate>20240212</startdate><enddate>20240212</enddate><creator>Dubed Bandomo, Geyla C.</creator><creator>Franco, Federico</creator><creator>Liu, Changwei</creator><creator>Mondal, Suvendu Sekhar</creator><creator>Gallo, Angelo</creator><creator>Nervi, Carlo</creator><creator>Lloret-Fillol, Julio</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-9778-4822</orcidid><orcidid>https://orcid.org/0000-0002-3712-7369</orcidid><orcidid>https://orcid.org/0000-0002-4240-9512</orcidid></search><sort><creationdate>20240212</creationdate><title>Toward the Understanding of the Structure–Activity Correlation in Single-Site Mn Covalent Organic Frameworks for Electrocatalytic CO2 Reduction</title><author>Dubed Bandomo, Geyla C. ; Franco, Federico ; Liu, Changwei ; Mondal, Suvendu Sekhar ; Gallo, Angelo ; Nervi, Carlo ; Lloret-Fillol, Julio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a190t-c91afe63d2499c5119b3005d12f2be27d5dc3bc322c62c8f559633eca7c446423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubed Bandomo, Geyla C.</creatorcontrib><creatorcontrib>Franco, Federico</creatorcontrib><creatorcontrib>Liu, Changwei</creatorcontrib><creatorcontrib>Mondal, Suvendu Sekhar</creatorcontrib><creatorcontrib>Gallo, Angelo</creatorcontrib><creatorcontrib>Nervi, Carlo</creatorcontrib><creatorcontrib>Lloret-Fillol, Julio</creatorcontrib><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubed Bandomo, Geyla C.</au><au>Franco, Federico</au><au>Liu, Changwei</au><au>Mondal, Suvendu Sekhar</au><au>Gallo, Angelo</au><au>Nervi, Carlo</au><au>Lloret-Fillol, Julio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward the Understanding of the Structure–Activity Correlation in Single-Site Mn Covalent Organic Frameworks for Electrocatalytic CO2 Reduction</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2024-02-12</date><risdate>2024</risdate><volume>7</volume><issue>3</issue><spage>1348</spage><epage>1357</epage><pages>1348-1357</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>The encapsulation of organometallic complexes into reticular covalent organic frameworks (COFs) represents an effective strategy for the immobilization of molecular electrocatalysts. In particular, well-defined polypyridyl Mn sites embedded into a crystalline COF backbone (COF bpyMn ) were found to exhibit higher selectivity and activity toward electrochemical CO2 reduction compared to the parent molecular derivative noncovalently immobilized on carbon electrodes. In situ mechanistic studies revealed that the electronic and steric features of the reticular framework strongly affect the redox mechanism of the Mn sites, stabilizing the formation of a mononuclear Mn­(I) radical anion intermediate over the most common off-cycle Mn0–Mn0 dimer. Herein, we report the study of a Mn-based COF (COF PTMn ), introducing a larger phenanthroline building block, to explore how tuning the structural and electronic properties of the lattice may affect the catalytic CO2 reduction performance and the mechanism at the molecular level of the reticular system. The Mn sites encapsulated into the reticular COF PTMn exhibited a remarkable enhancement in the intrinsic catalytic CO2 reduction activity at near-neutral pH compared to that of the corresponding noncovalently immobilized molecular derivative. On the other hand, the poor crystallinity and porosity of COF PTMn , likely introduced by the lattice expansion and spatial dynamics of the phenanthroline linker, were found to limit its catalytic performances compared to those of the bipyridyl COF bpyMn analogue. ATR-IR spectroelectrochemistry revealed that the higher spatial mobility of the Mn sites does not completely suppress the Mn0–Mn0 dimerization upon the electrochemical reduction of the Mn sites at the COF bpyMn . This work highlights the positive role of the reticular structure of the material in enhancing its catalytic activity versus that of its molecular counterpart and provides useful hints for the future design and development of efficient reticular frameworks for electrocatalytic applications.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.3c03117</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9778-4822</orcidid><orcidid>https://orcid.org/0000-0002-3712-7369</orcidid><orcidid>https://orcid.org/0000-0002-4240-9512</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2024-02, Vol.7 (3), p.1348-1357
issn 2574-0962
2574-0962
language eng
recordid cdi_acs_journals_10_1021_acsaem_3c03117
source ACS Publications
title Toward the Understanding of the Structure–Activity Correlation in Single-Site Mn Covalent Organic Frameworks for Electrocatalytic CO2 Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A08%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20the%20Understanding%20of%20the%20Structure%E2%80%93Activity%20Correlation%20in%20Single-Site%20Mn%20Covalent%20Organic%20Frameworks%20for%20Electrocatalytic%20CO2%20Reduction&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Dubed%20Bandomo,%20Geyla%20C.&rft.date=2024-02-12&rft.volume=7&rft.issue=3&rft.spage=1348&rft.epage=1357&rft.pages=1348-1357&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.3c03117&rft_dat=%3Cacs%3Eb378105956%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true