Unveiling Morphology and Crystallinity Dynamics in Ni x Mn1–x CO3 Cathode Precursors through Batch-Mode Coprecipitation

This study delves into the synthesis and control of Ni x Mn1–x CO3, a critical class of Mn-rich, Co-free precursors vital for cathode-oxide materials in energy storage and conversion technologies. Employing batch-mode coprecipitation, we systematically generated samples with varying Ni concentration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2024-03, Vol.7 (6), p.2167-2177
Hauptverfasser: Chen, Jiajun, Gutierrez, Arturo, Sultanov, Maksim A., Wen, Jianguo, Croy, Jason R., Wang, Yan, Srinivasan, Venkat, Barai, Pallab
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2177
container_issue 6
container_start_page 2167
container_title ACS applied energy materials
container_volume 7
creator Chen, Jiajun
Gutierrez, Arturo
Sultanov, Maksim A.
Wen, Jianguo
Croy, Jason R.
Wang, Yan
Srinivasan, Venkat
Barai, Pallab
description This study delves into the synthesis and control of Ni x Mn1–x CO3, a critical class of Mn-rich, Co-free precursors vital for cathode-oxide materials in energy storage and conversion technologies. Employing batch-mode coprecipitation, we systematically generated samples with varying Ni concentrations (x = 0, 0.1, 0.3, 0.5, 0.7, and 0.9) and conducted a comprehensive analysis of their compositions, crystallinities, transition-metal distributions, and particle morphologies through both experimental and computational methods. A significant variation in particle size and crystallinity was observed, contingent on the Ni content. A pivotal transition emerged at Ni concentrations above x = ∼0.5, transforming uniform morphologies, such as spherical, monodisperse, pseudo-single-crystalline particles, into bimodal, polycrystalline structures. Furthermore, the study highlights the role of Ni–ammonia complexes leading to Ni-deficient precipitates and underscores the importance of ammonia concentration in achieving precise Ni content control. This study unveils critical reaction conditions governing Mn-rich precursor properties that are vital for cathode-oxides, emphasizing the need for meticulous synthetic control and offering the potential for practical applications in advanced energy storage and conversion systems.
doi_str_mv 10.1021/acsaem.3c02830
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsaem_3c02830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d79553612</sourcerecordid><originalsourceid>FETCH-LOGICAL-a120t-3b84da47b31132585e8a71a1806e55fb958a2ce18cf56a560fbefaa8918c67213</originalsourceid><addsrcrecordid>eNpNkL1OwzAUhS0EElXpyuwZKcU_deKMEKAgtZSBztGN6zSuUruyXdRsvANvyJOQqh2Y7tH9pHOkD6FbSsaUMHoPKoDejrkiTHJygQZMZJOE5Cm7_Jev0SiEDSGE5jRleT5A3dJ-adMau8Zz53eNa926w2BXuPBdiND2yMQOP3UWtkYFbCx-N_iA55b-fv8ccLHguIDYuJXGH16rvQ_OBxwb7_brBj9CVE0yP9LC7XpudiZCNM7eoKsa2qBH5ztEy5fnz-I1mS2mb8XDLAHKSEx4JScrmGQVp5QzIYWWkFGgkqRaiLrKhQSmNJWqFimIlNSVrgFk3n_SjFE-RHen3l5RuXF7b_u1kpLy6K08eSvP3vgfvHtj3g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unveiling Morphology and Crystallinity Dynamics in Ni x Mn1–x CO3 Cathode Precursors through Batch-Mode Coprecipitation</title><source>ACS Publications</source><creator>Chen, Jiajun ; Gutierrez, Arturo ; Sultanov, Maksim A. ; Wen, Jianguo ; Croy, Jason R. ; Wang, Yan ; Srinivasan, Venkat ; Barai, Pallab</creator><creatorcontrib>Chen, Jiajun ; Gutierrez, Arturo ; Sultanov, Maksim A. ; Wen, Jianguo ; Croy, Jason R. ; Wang, Yan ; Srinivasan, Venkat ; Barai, Pallab</creatorcontrib><description>This study delves into the synthesis and control of Ni x Mn1–x CO3, a critical class of Mn-rich, Co-free precursors vital for cathode-oxide materials in energy storage and conversion technologies. Employing batch-mode coprecipitation, we systematically generated samples with varying Ni concentrations (x = 0, 0.1, 0.3, 0.5, 0.7, and 0.9) and conducted a comprehensive analysis of their compositions, crystallinities, transition-metal distributions, and particle morphologies through both experimental and computational methods. A significant variation in particle size and crystallinity was observed, contingent on the Ni content. A pivotal transition emerged at Ni concentrations above x = ∼0.5, transforming uniform morphologies, such as spherical, monodisperse, pseudo-single-crystalline particles, into bimodal, polycrystalline structures. Furthermore, the study highlights the role of Ni–ammonia complexes leading to Ni-deficient precipitates and underscores the importance of ammonia concentration in achieving precise Ni content control. This study unveils critical reaction conditions governing Mn-rich precursor properties that are vital for cathode-oxides, emphasizing the need for meticulous synthetic control and offering the potential for practical applications in advanced energy storage and conversion systems.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.3c02830</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2024-03, Vol.7 (6), p.2167-2177</ispartof><rights>2024 UChicago Argonne, LLC, Operator of Argonne National Laboratory. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3755-0044 ; 0000-0003-2792-2948 ; 0000-0002-5839-3666 ; 0000-0003-2217-6392 ; 0000-0002-1248-5952 ; 0000-0003-1060-2956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.3c02830$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.3c02830$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Chen, Jiajun</creatorcontrib><creatorcontrib>Gutierrez, Arturo</creatorcontrib><creatorcontrib>Sultanov, Maksim A.</creatorcontrib><creatorcontrib>Wen, Jianguo</creatorcontrib><creatorcontrib>Croy, Jason R.</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Srinivasan, Venkat</creatorcontrib><creatorcontrib>Barai, Pallab</creatorcontrib><title>Unveiling Morphology and Crystallinity Dynamics in Ni x Mn1–x CO3 Cathode Precursors through Batch-Mode Coprecipitation</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>This study delves into the synthesis and control of Ni x Mn1–x CO3, a critical class of Mn-rich, Co-free precursors vital for cathode-oxide materials in energy storage and conversion technologies. Employing batch-mode coprecipitation, we systematically generated samples with varying Ni concentrations (x = 0, 0.1, 0.3, 0.5, 0.7, and 0.9) and conducted a comprehensive analysis of their compositions, crystallinities, transition-metal distributions, and particle morphologies through both experimental and computational methods. A significant variation in particle size and crystallinity was observed, contingent on the Ni content. A pivotal transition emerged at Ni concentrations above x = ∼0.5, transforming uniform morphologies, such as spherical, monodisperse, pseudo-single-crystalline particles, into bimodal, polycrystalline structures. Furthermore, the study highlights the role of Ni–ammonia complexes leading to Ni-deficient precipitates and underscores the importance of ammonia concentration in achieving precise Ni content control. This study unveils critical reaction conditions governing Mn-rich precursor properties that are vital for cathode-oxides, emphasizing the need for meticulous synthetic control and offering the potential for practical applications in advanced energy storage and conversion systems.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkL1OwzAUhS0EElXpyuwZKcU_deKMEKAgtZSBztGN6zSuUruyXdRsvANvyJOQqh2Y7tH9pHOkD6FbSsaUMHoPKoDejrkiTHJygQZMZJOE5Cm7_Jev0SiEDSGE5jRleT5A3dJ-adMau8Zz53eNa926w2BXuPBdiND2yMQOP3UWtkYFbCx-N_iA55b-fv8ccLHguIDYuJXGH16rvQ_OBxwb7_brBj9CVE0yP9LC7XpudiZCNM7eoKsa2qBH5ztEy5fnz-I1mS2mb8XDLAHKSEx4JScrmGQVp5QzIYWWkFGgkqRaiLrKhQSmNJWqFimIlNSVrgFk3n_SjFE-RHen3l5RuXF7b_u1kpLy6K08eSvP3vgfvHtj3g</recordid><startdate>20240325</startdate><enddate>20240325</enddate><creator>Chen, Jiajun</creator><creator>Gutierrez, Arturo</creator><creator>Sultanov, Maksim A.</creator><creator>Wen, Jianguo</creator><creator>Croy, Jason R.</creator><creator>Wang, Yan</creator><creator>Srinivasan, Venkat</creator><creator>Barai, Pallab</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-3755-0044</orcidid><orcidid>https://orcid.org/0000-0003-2792-2948</orcidid><orcidid>https://orcid.org/0000-0002-5839-3666</orcidid><orcidid>https://orcid.org/0000-0003-2217-6392</orcidid><orcidid>https://orcid.org/0000-0002-1248-5952</orcidid><orcidid>https://orcid.org/0000-0003-1060-2956</orcidid></search><sort><creationdate>20240325</creationdate><title>Unveiling Morphology and Crystallinity Dynamics in Ni x Mn1–x CO3 Cathode Precursors through Batch-Mode Coprecipitation</title><author>Chen, Jiajun ; Gutierrez, Arturo ; Sultanov, Maksim A. ; Wen, Jianguo ; Croy, Jason R. ; Wang, Yan ; Srinivasan, Venkat ; Barai, Pallab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a120t-3b84da47b31132585e8a71a1806e55fb958a2ce18cf56a560fbefaa8918c67213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jiajun</creatorcontrib><creatorcontrib>Gutierrez, Arturo</creatorcontrib><creatorcontrib>Sultanov, Maksim A.</creatorcontrib><creatorcontrib>Wen, Jianguo</creatorcontrib><creatorcontrib>Croy, Jason R.</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Srinivasan, Venkat</creatorcontrib><creatorcontrib>Barai, Pallab</creatorcontrib><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Jiajun</au><au>Gutierrez, Arturo</au><au>Sultanov, Maksim A.</au><au>Wen, Jianguo</au><au>Croy, Jason R.</au><au>Wang, Yan</au><au>Srinivasan, Venkat</au><au>Barai, Pallab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unveiling Morphology and Crystallinity Dynamics in Ni x Mn1–x CO3 Cathode Precursors through Batch-Mode Coprecipitation</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2024-03-25</date><risdate>2024</risdate><volume>7</volume><issue>6</issue><spage>2167</spage><epage>2177</epage><pages>2167-2177</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>This study delves into the synthesis and control of Ni x Mn1–x CO3, a critical class of Mn-rich, Co-free precursors vital for cathode-oxide materials in energy storage and conversion technologies. Employing batch-mode coprecipitation, we systematically generated samples with varying Ni concentrations (x = 0, 0.1, 0.3, 0.5, 0.7, and 0.9) and conducted a comprehensive analysis of their compositions, crystallinities, transition-metal distributions, and particle morphologies through both experimental and computational methods. A significant variation in particle size and crystallinity was observed, contingent on the Ni content. A pivotal transition emerged at Ni concentrations above x = ∼0.5, transforming uniform morphologies, such as spherical, monodisperse, pseudo-single-crystalline particles, into bimodal, polycrystalline structures. Furthermore, the study highlights the role of Ni–ammonia complexes leading to Ni-deficient precipitates and underscores the importance of ammonia concentration in achieving precise Ni content control. This study unveils critical reaction conditions governing Mn-rich precursor properties that are vital for cathode-oxides, emphasizing the need for meticulous synthetic control and offering the potential for practical applications in advanced energy storage and conversion systems.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.3c02830</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3755-0044</orcidid><orcidid>https://orcid.org/0000-0003-2792-2948</orcidid><orcidid>https://orcid.org/0000-0002-5839-3666</orcidid><orcidid>https://orcid.org/0000-0003-2217-6392</orcidid><orcidid>https://orcid.org/0000-0002-1248-5952</orcidid><orcidid>https://orcid.org/0000-0003-1060-2956</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2024-03, Vol.7 (6), p.2167-2177
issn 2574-0962
2574-0962
language eng
recordid cdi_acs_journals_10_1021_acsaem_3c02830
source ACS Publications
title Unveiling Morphology and Crystallinity Dynamics in Ni x Mn1–x CO3 Cathode Precursors through Batch-Mode Coprecipitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A12%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unveiling%20Morphology%20and%20Crystallinity%20Dynamics%20in%20Ni%20x%20Mn1%E2%80%93x%20CO3%20Cathode%20Precursors%20through%20Batch-Mode%20Coprecipitation&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Chen,%20Jiajun&rft.date=2024-03-25&rft.volume=7&rft.issue=6&rft.spage=2167&rft.epage=2177&rft.pages=2167-2177&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.3c02830&rft_dat=%3Cacs%3Ed79553612%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true