Simple Synchronous Dual-Modification Strategy with Zr4+ Doping and CeO2 Nanowelding to Stabilize Layered Ni-Rich Cathode Materials

A Ni-rich layered oxide, one promising cathode for lithium-ion batteries (LIBs), exhibits the advantages of low cost and high capacity but suffers from rapid capacity loss due to bulk structural instability and surface side reactions. Herein, a simple synchronous dual-modification strategy with Zr4+...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2023-05, Vol.6 (10), p.5473-5485
Hauptverfasser: Liu, Jun-Ke, Yin, Zu-Wei, Zheng, Wei-Chen, Zhang, Jing, Deng, Sai-Sai, Wang, Zhen, Deng, Li, Xie, Shi-Jun, Liu, Zong-Kui, Avdeev, Maxim, Qu, Fengjin, Kan, Wang Hay, Zhou, Yao, Li, Jun-Tao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5485
container_issue 10
container_start_page 5473
container_title ACS applied energy materials
container_volume 6
creator Liu, Jun-Ke
Yin, Zu-Wei
Zheng, Wei-Chen
Zhang, Jing
Deng, Sai-Sai
Wang, Zhen
Deng, Li
Xie, Shi-Jun
Liu, Zong-Kui
Avdeev, Maxim
Qu, Fengjin
Kan, Wang Hay
Zhou, Yao
Li, Jun-Tao
description A Ni-rich layered oxide, one promising cathode for lithium-ion batteries (LIBs), exhibits the advantages of low cost and high capacity but suffers from rapid capacity loss due to bulk structural instability and surface side reactions. Herein, a simple synchronous dual-modification strategy with Zr4+ doping and CeO2 nanowelding is proposed to address such issues. Utilizing the migration energy difference of Zr and Ce ions in layered structures, one-step high-temperature sintering of LiNi0.8Co0.1Mn0.1O2 particles with Zr and Ce nitrate distributions enables simultaneous doping of Zr ions in the bulk and CeO2 surface modification. Therein, Zr ions in the bulk occupying the Li sites can improve the Li+ diffusion rate and stabilize the crystal structure, while CeO2 on the surface provides nanowelding between the grain boundaries and resistance to electrolyte erosion. Theoretical calculations and a series of structure/composition characterizations (i.e., neutron scattering, in situ X-ray diffraction, etc.) validated the proposed strategy and its role in stabilizing the Ni-rich cathodes. The synergistic effect of Zr4+ doping and CeO2 nanowelding enables an impressive initial capacity of 187.2 mAh g–1 (2.7–4.3 V vs Li/Li+) with 86.1% retention after 200 cycles at 1 C and rate capabilities of 146.6 and 127.3 mAh g–1 at 5 and 10 C, respectively. Upon increasing the testing temperature to 60 °C, the dual-modified Ni-rich cathode exhibits an initial discharge capacity of 203.5 mAh g–1 with a good retention of 80.8% after 100 cycles at 0.5 C. The present strategy utilizing the migration energy difference of metal ions to achieve synchronous bulk doping and surface modification will offer fresh insights to stabilize layered cathode materials for LIBs, which can be widely used in other kinds of batteries with various cathode materials.
doi_str_mv 10.1021/acsaem.3c00565
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsaem_3c00565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c813483305</sourcerecordid><originalsourceid>FETCH-LOGICAL-a120t-4ebc34793cb62a55df755ab3089100c2079bfdedd8b453cce251dbb6af9aaa423</originalsourceid><addsrcrecordid>eNpNkMtLw0AYxBdRsNRePe9Zie4jm3SPkvqCPsDqxUv49pFmS7pbki2lHv3LTWkPnmYYmBn4IXRLyQMljD6C7sBuHrgmRGTiAg2YyNOEyIxd_vPXaNR1a0IIlTRjUg7Q79Jtto3Fy4PXdRt82HV4soMmmQXjKqchuuDxMrYQ7eqA9y7W-LtN7_EkbJ1fYfAGF3bB8Bx82NvGHMMY-gYo17gfi6dwsK01eO6SD6drXECsg7F41i-2DpruBl1VvdjRWYfo6-X5s3hLpovX9-JpmgBlJCapVZqnueRaZQyEMFUuBChOxpISohnJpaqMNWasUsG1tkxQo1QGlQSAlPEhujvt9qzKddi1vn8rKSmPAMsTwPIMkP8B0slmmA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simple Synchronous Dual-Modification Strategy with Zr4+ Doping and CeO2 Nanowelding to Stabilize Layered Ni-Rich Cathode Materials</title><source>ACS Publications</source><creator>Liu, Jun-Ke ; Yin, Zu-Wei ; Zheng, Wei-Chen ; Zhang, Jing ; Deng, Sai-Sai ; Wang, Zhen ; Deng, Li ; Xie, Shi-Jun ; Liu, Zong-Kui ; Avdeev, Maxim ; Qu, Fengjin ; Kan, Wang Hay ; Zhou, Yao ; Li, Jun-Tao</creator><creatorcontrib>Liu, Jun-Ke ; Yin, Zu-Wei ; Zheng, Wei-Chen ; Zhang, Jing ; Deng, Sai-Sai ; Wang, Zhen ; Deng, Li ; Xie, Shi-Jun ; Liu, Zong-Kui ; Avdeev, Maxim ; Qu, Fengjin ; Kan, Wang Hay ; Zhou, Yao ; Li, Jun-Tao</creatorcontrib><description>A Ni-rich layered oxide, one promising cathode for lithium-ion batteries (LIBs), exhibits the advantages of low cost and high capacity but suffers from rapid capacity loss due to bulk structural instability and surface side reactions. Herein, a simple synchronous dual-modification strategy with Zr4+ doping and CeO2 nanowelding is proposed to address such issues. Utilizing the migration energy difference of Zr and Ce ions in layered structures, one-step high-temperature sintering of LiNi0.8Co0.1Mn0.1O2 particles with Zr and Ce nitrate distributions enables simultaneous doping of Zr ions in the bulk and CeO2 surface modification. Therein, Zr ions in the bulk occupying the Li sites can improve the Li+ diffusion rate and stabilize the crystal structure, while CeO2 on the surface provides nanowelding between the grain boundaries and resistance to electrolyte erosion. Theoretical calculations and a series of structure/composition characterizations (i.e., neutron scattering, in situ X-ray diffraction, etc.) validated the proposed strategy and its role in stabilizing the Ni-rich cathodes. The synergistic effect of Zr4+ doping and CeO2 nanowelding enables an impressive initial capacity of 187.2 mAh g–1 (2.7–4.3 V vs Li/Li+) with 86.1% retention after 200 cycles at 1 C and rate capabilities of 146.6 and 127.3 mAh g–1 at 5 and 10 C, respectively. Upon increasing the testing temperature to 60 °C, the dual-modified Ni-rich cathode exhibits an initial discharge capacity of 203.5 mAh g–1 with a good retention of 80.8% after 100 cycles at 0.5 C. The present strategy utilizing the migration energy difference of metal ions to achieve synchronous bulk doping and surface modification will offer fresh insights to stabilize layered cathode materials for LIBs, which can be widely used in other kinds of batteries with various cathode materials.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.3c00565</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2023-05, Vol.6 (10), p.5473-5485</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9650-6385 ; 0000-0003-2366-5809 ; 0000-0003-4021-6597 ; 0000-0002-0728-1154 ; 0000-0002-1663-2999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.3c00565$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.3c00565$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Liu, Jun-Ke</creatorcontrib><creatorcontrib>Yin, Zu-Wei</creatorcontrib><creatorcontrib>Zheng, Wei-Chen</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Deng, Sai-Sai</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Deng, Li</creatorcontrib><creatorcontrib>Xie, Shi-Jun</creatorcontrib><creatorcontrib>Liu, Zong-Kui</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Qu, Fengjin</creatorcontrib><creatorcontrib>Kan, Wang Hay</creatorcontrib><creatorcontrib>Zhou, Yao</creatorcontrib><creatorcontrib>Li, Jun-Tao</creatorcontrib><title>Simple Synchronous Dual-Modification Strategy with Zr4+ Doping and CeO2 Nanowelding to Stabilize Layered Ni-Rich Cathode Materials</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>A Ni-rich layered oxide, one promising cathode for lithium-ion batteries (LIBs), exhibits the advantages of low cost and high capacity but suffers from rapid capacity loss due to bulk structural instability and surface side reactions. Herein, a simple synchronous dual-modification strategy with Zr4+ doping and CeO2 nanowelding is proposed to address such issues. Utilizing the migration energy difference of Zr and Ce ions in layered structures, one-step high-temperature sintering of LiNi0.8Co0.1Mn0.1O2 particles with Zr and Ce nitrate distributions enables simultaneous doping of Zr ions in the bulk and CeO2 surface modification. Therein, Zr ions in the bulk occupying the Li sites can improve the Li+ diffusion rate and stabilize the crystal structure, while CeO2 on the surface provides nanowelding between the grain boundaries and resistance to electrolyte erosion. Theoretical calculations and a series of structure/composition characterizations (i.e., neutron scattering, in situ X-ray diffraction, etc.) validated the proposed strategy and its role in stabilizing the Ni-rich cathodes. The synergistic effect of Zr4+ doping and CeO2 nanowelding enables an impressive initial capacity of 187.2 mAh g–1 (2.7–4.3 V vs Li/Li+) with 86.1% retention after 200 cycles at 1 C and rate capabilities of 146.6 and 127.3 mAh g–1 at 5 and 10 C, respectively. Upon increasing the testing temperature to 60 °C, the dual-modified Ni-rich cathode exhibits an initial discharge capacity of 203.5 mAh g–1 with a good retention of 80.8% after 100 cycles at 0.5 C. The present strategy utilizing the migration energy difference of metal ions to achieve synchronous bulk doping and surface modification will offer fresh insights to stabilize layered cathode materials for LIBs, which can be widely used in other kinds of batteries with various cathode materials.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkMtLw0AYxBdRsNRePe9Zie4jm3SPkvqCPsDqxUv49pFmS7pbki2lHv3LTWkPnmYYmBn4IXRLyQMljD6C7sBuHrgmRGTiAg2YyNOEyIxd_vPXaNR1a0IIlTRjUg7Q79Jtto3Fy4PXdRt82HV4soMmmQXjKqchuuDxMrYQ7eqA9y7W-LtN7_EkbJ1fYfAGF3bB8Bx82NvGHMMY-gYo17gfi6dwsK01eO6SD6drXECsg7F41i-2DpruBl1VvdjRWYfo6-X5s3hLpovX9-JpmgBlJCapVZqnueRaZQyEMFUuBChOxpISohnJpaqMNWasUsG1tkxQo1QGlQSAlPEhujvt9qzKddi1vn8rKSmPAMsTwPIMkP8B0slmmA</recordid><startdate>20230522</startdate><enddate>20230522</enddate><creator>Liu, Jun-Ke</creator><creator>Yin, Zu-Wei</creator><creator>Zheng, Wei-Chen</creator><creator>Zhang, Jing</creator><creator>Deng, Sai-Sai</creator><creator>Wang, Zhen</creator><creator>Deng, Li</creator><creator>Xie, Shi-Jun</creator><creator>Liu, Zong-Kui</creator><creator>Avdeev, Maxim</creator><creator>Qu, Fengjin</creator><creator>Kan, Wang Hay</creator><creator>Zhou, Yao</creator><creator>Li, Jun-Tao</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-9650-6385</orcidid><orcidid>https://orcid.org/0000-0003-2366-5809</orcidid><orcidid>https://orcid.org/0000-0003-4021-6597</orcidid><orcidid>https://orcid.org/0000-0002-0728-1154</orcidid><orcidid>https://orcid.org/0000-0002-1663-2999</orcidid></search><sort><creationdate>20230522</creationdate><title>Simple Synchronous Dual-Modification Strategy with Zr4+ Doping and CeO2 Nanowelding to Stabilize Layered Ni-Rich Cathode Materials</title><author>Liu, Jun-Ke ; Yin, Zu-Wei ; Zheng, Wei-Chen ; Zhang, Jing ; Deng, Sai-Sai ; Wang, Zhen ; Deng, Li ; Xie, Shi-Jun ; Liu, Zong-Kui ; Avdeev, Maxim ; Qu, Fengjin ; Kan, Wang Hay ; Zhou, Yao ; Li, Jun-Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a120t-4ebc34793cb62a55df755ab3089100c2079bfdedd8b453cce251dbb6af9aaa423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jun-Ke</creatorcontrib><creatorcontrib>Yin, Zu-Wei</creatorcontrib><creatorcontrib>Zheng, Wei-Chen</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Deng, Sai-Sai</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Deng, Li</creatorcontrib><creatorcontrib>Xie, Shi-Jun</creatorcontrib><creatorcontrib>Liu, Zong-Kui</creatorcontrib><creatorcontrib>Avdeev, Maxim</creatorcontrib><creatorcontrib>Qu, Fengjin</creatorcontrib><creatorcontrib>Kan, Wang Hay</creatorcontrib><creatorcontrib>Zhou, Yao</creatorcontrib><creatorcontrib>Li, Jun-Tao</creatorcontrib><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jun-Ke</au><au>Yin, Zu-Wei</au><au>Zheng, Wei-Chen</au><au>Zhang, Jing</au><au>Deng, Sai-Sai</au><au>Wang, Zhen</au><au>Deng, Li</au><au>Xie, Shi-Jun</au><au>Liu, Zong-Kui</au><au>Avdeev, Maxim</au><au>Qu, Fengjin</au><au>Kan, Wang Hay</au><au>Zhou, Yao</au><au>Li, Jun-Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simple Synchronous Dual-Modification Strategy with Zr4+ Doping and CeO2 Nanowelding to Stabilize Layered Ni-Rich Cathode Materials</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2023-05-22</date><risdate>2023</risdate><volume>6</volume><issue>10</issue><spage>5473</spage><epage>5485</epage><pages>5473-5485</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>A Ni-rich layered oxide, one promising cathode for lithium-ion batteries (LIBs), exhibits the advantages of low cost and high capacity but suffers from rapid capacity loss due to bulk structural instability and surface side reactions. Herein, a simple synchronous dual-modification strategy with Zr4+ doping and CeO2 nanowelding is proposed to address such issues. Utilizing the migration energy difference of Zr and Ce ions in layered structures, one-step high-temperature sintering of LiNi0.8Co0.1Mn0.1O2 particles with Zr and Ce nitrate distributions enables simultaneous doping of Zr ions in the bulk and CeO2 surface modification. Therein, Zr ions in the bulk occupying the Li sites can improve the Li+ diffusion rate and stabilize the crystal structure, while CeO2 on the surface provides nanowelding between the grain boundaries and resistance to electrolyte erosion. Theoretical calculations and a series of structure/composition characterizations (i.e., neutron scattering, in situ X-ray diffraction, etc.) validated the proposed strategy and its role in stabilizing the Ni-rich cathodes. The synergistic effect of Zr4+ doping and CeO2 nanowelding enables an impressive initial capacity of 187.2 mAh g–1 (2.7–4.3 V vs Li/Li+) with 86.1% retention after 200 cycles at 1 C and rate capabilities of 146.6 and 127.3 mAh g–1 at 5 and 10 C, respectively. Upon increasing the testing temperature to 60 °C, the dual-modified Ni-rich cathode exhibits an initial discharge capacity of 203.5 mAh g–1 with a good retention of 80.8% after 100 cycles at 0.5 C. The present strategy utilizing the migration energy difference of metal ions to achieve synchronous bulk doping and surface modification will offer fresh insights to stabilize layered cathode materials for LIBs, which can be widely used in other kinds of batteries with various cathode materials.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.3c00565</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9650-6385</orcidid><orcidid>https://orcid.org/0000-0003-2366-5809</orcidid><orcidid>https://orcid.org/0000-0003-4021-6597</orcidid><orcidid>https://orcid.org/0000-0002-0728-1154</orcidid><orcidid>https://orcid.org/0000-0002-1663-2999</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2023-05, Vol.6 (10), p.5473-5485
issn 2574-0962
2574-0962
language eng
recordid cdi_acs_journals_10_1021_acsaem_3c00565
source ACS Publications
title Simple Synchronous Dual-Modification Strategy with Zr4+ Doping and CeO2 Nanowelding to Stabilize Layered Ni-Rich Cathode Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A16%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simple%20Synchronous%20Dual-Modification%20Strategy%20with%20Zr4+%20Doping%20and%20CeO2%20Nanowelding%20to%20Stabilize%20Layered%20Ni-Rich%20Cathode%20Materials&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Liu,%20Jun-Ke&rft.date=2023-05-22&rft.volume=6&rft.issue=10&rft.spage=5473&rft.epage=5485&rft.pages=5473-5485&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.3c00565&rft_dat=%3Cacs%3Ec813483305%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true