Electron Probe Bridging Solid-State Chemistry and Surface Chemistry: Example of the TiO2‑O2 System

This work reports the capacity of a high-temperature electron probe to bridge solid-state chemistry and surface chemistry. This goal could be accomplished by performing the characterization of the surface layer in equilibrium with both the gas phase and bulk phase, thus dealing with a system governe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2023-01, Vol.6 (2), p.865-875
Hauptverfasser: Bak, Tadeusz, Gür, Turgut M., Nowotny, Janusz
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 875
container_issue 2
container_start_page 865
container_title ACS applied energy materials
container_volume 6
creator Bak, Tadeusz
Gür, Turgut M.
Nowotny, Janusz
description This work reports the capacity of a high-temperature electron probe to bridge solid-state chemistry and surface chemistry. This goal could be accomplished by performing the characterization of the surface layer in equilibrium with both the gas phase and bulk phase, thus dealing with a system governed by thermodynamic laws, which is free of unknown kinetic terms. In this work, we contemplate the use of the electron probe in surface defect engineering of the next generation of energy materials, that are expected to enhance the production of clean energy. The concept of this kind of engineering is considered for the TiO2-O2 model system. Such example demonstrates the role of surface segregation in the formation of a quasi-isolated surface structure, that has a profound impact on the reactivity of solids and their performance in energy conversion devices. Consequently, it is essential that studies of the effect of surface defect structure on the reactivity of solids are conducted in situ and in operando, under conditions of real application. This is expected to aid directly the rational design of surface properties in the processing of high-performance energy materials for fuel cells, solar cells, batteries, catalysts and photo-catalysts, as well as sensors.
doi_str_mv 10.1021/acsaem.2c03216
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsaem_2c03216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c081455610</sourcerecordid><originalsourceid>FETCH-LOGICAL-a190t-9b19fba575208d0a2f9fd486c78dfdfa23036d106fc5354564cf0354cb6eb47a3</originalsourceid><addsrcrecordid>eNpNkLtqwzAYhUVpoSHN2llzwekvyZKtbq1xLxBwwelsZF0SB1-KrECz9RX6in2SuiRDpvNxhnPgQ-iWwJIAJfdKj8p2S6qBUSIu0IzyJI5ACnp5xtdoMY47ACCSCCrlDJm8tTr4ocfvfqgtfvKN2TT9BpdD25ioDCpYnG1t14zBH7DqDS733il91j7g_Et1n63Fg8Nha_G6Kejv909BcXkYg-1u0JVT7WgXp5yjj-d8nb1Gq-LlLXtcRYpICJGsiXS14gmnkBpQ1Eln4lToJDXOOEUZMGEICKc54zEXsXYwga6FreNEsTm6O-5ONqrdsPf99FYRqP4VVUdF1UkR-wMadVuQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electron Probe Bridging Solid-State Chemistry and Surface Chemistry: Example of the TiO2‑O2 System</title><source>American Chemical Society Journals</source><creator>Bak, Tadeusz ; Gür, Turgut M. ; Nowotny, Janusz</creator><creatorcontrib>Bak, Tadeusz ; Gür, Turgut M. ; Nowotny, Janusz</creatorcontrib><description>This work reports the capacity of a high-temperature electron probe to bridge solid-state chemistry and surface chemistry. This goal could be accomplished by performing the characterization of the surface layer in equilibrium with both the gas phase and bulk phase, thus dealing with a system governed by thermodynamic laws, which is free of unknown kinetic terms. In this work, we contemplate the use of the electron probe in surface defect engineering of the next generation of energy materials, that are expected to enhance the production of clean energy. The concept of this kind of engineering is considered for the TiO2-O2 model system. Such example demonstrates the role of surface segregation in the formation of a quasi-isolated surface structure, that has a profound impact on the reactivity of solids and their performance in energy conversion devices. Consequently, it is essential that studies of the effect of surface defect structure on the reactivity of solids are conducted in situ and in operando, under conditions of real application. This is expected to aid directly the rational design of surface properties in the processing of high-performance energy materials for fuel cells, solar cells, batteries, catalysts and photo-catalysts, as well as sensors.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.2c03216</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2023-01, Vol.6 (2), p.865-875</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1822-7508 ; 0000-0003-1461-951X ; 0000-0002-2218-4766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.2c03216$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.2c03216$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Bak, Tadeusz</creatorcontrib><creatorcontrib>Gür, Turgut M.</creatorcontrib><creatorcontrib>Nowotny, Janusz</creatorcontrib><title>Electron Probe Bridging Solid-State Chemistry and Surface Chemistry: Example of the TiO2‑O2 System</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>This work reports the capacity of a high-temperature electron probe to bridge solid-state chemistry and surface chemistry. This goal could be accomplished by performing the characterization of the surface layer in equilibrium with both the gas phase and bulk phase, thus dealing with a system governed by thermodynamic laws, which is free of unknown kinetic terms. In this work, we contemplate the use of the electron probe in surface defect engineering of the next generation of energy materials, that are expected to enhance the production of clean energy. The concept of this kind of engineering is considered for the TiO2-O2 model system. Such example demonstrates the role of surface segregation in the formation of a quasi-isolated surface structure, that has a profound impact on the reactivity of solids and their performance in energy conversion devices. Consequently, it is essential that studies of the effect of surface defect structure on the reactivity of solids are conducted in situ and in operando, under conditions of real application. This is expected to aid directly the rational design of surface properties in the processing of high-performance energy materials for fuel cells, solar cells, batteries, catalysts and photo-catalysts, as well as sensors.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkLtqwzAYhUVpoSHN2llzwekvyZKtbq1xLxBwwelsZF0SB1-KrECz9RX6in2SuiRDpvNxhnPgQ-iWwJIAJfdKj8p2S6qBUSIu0IzyJI5ACnp5xtdoMY47ACCSCCrlDJm8tTr4ocfvfqgtfvKN2TT9BpdD25ioDCpYnG1t14zBH7DqDS733il91j7g_Et1n63Fg8Nha_G6Kejv909BcXkYg-1u0JVT7WgXp5yjj-d8nb1Gq-LlLXtcRYpICJGsiXS14gmnkBpQ1Eln4lToJDXOOEUZMGEICKc54zEXsXYwga6FreNEsTm6O-5ONqrdsPf99FYRqP4VVUdF1UkR-wMadVuQ</recordid><startdate>20230123</startdate><enddate>20230123</enddate><creator>Bak, Tadeusz</creator><creator>Gür, Turgut M.</creator><creator>Nowotny, Janusz</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-1822-7508</orcidid><orcidid>https://orcid.org/0000-0003-1461-951X</orcidid><orcidid>https://orcid.org/0000-0002-2218-4766</orcidid></search><sort><creationdate>20230123</creationdate><title>Electron Probe Bridging Solid-State Chemistry and Surface Chemistry: Example of the TiO2‑O2 System</title><author>Bak, Tadeusz ; Gür, Turgut M. ; Nowotny, Janusz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a190t-9b19fba575208d0a2f9fd486c78dfdfa23036d106fc5354564cf0354cb6eb47a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bak, Tadeusz</creatorcontrib><creatorcontrib>Gür, Turgut M.</creatorcontrib><creatorcontrib>Nowotny, Janusz</creatorcontrib><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bak, Tadeusz</au><au>Gür, Turgut M.</au><au>Nowotny, Janusz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron Probe Bridging Solid-State Chemistry and Surface Chemistry: Example of the TiO2‑O2 System</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2023-01-23</date><risdate>2023</risdate><volume>6</volume><issue>2</issue><spage>865</spage><epage>875</epage><pages>865-875</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>This work reports the capacity of a high-temperature electron probe to bridge solid-state chemistry and surface chemistry. This goal could be accomplished by performing the characterization of the surface layer in equilibrium with both the gas phase and bulk phase, thus dealing with a system governed by thermodynamic laws, which is free of unknown kinetic terms. In this work, we contemplate the use of the electron probe in surface defect engineering of the next generation of energy materials, that are expected to enhance the production of clean energy. The concept of this kind of engineering is considered for the TiO2-O2 model system. Such example demonstrates the role of surface segregation in the formation of a quasi-isolated surface structure, that has a profound impact on the reactivity of solids and their performance in energy conversion devices. Consequently, it is essential that studies of the effect of surface defect structure on the reactivity of solids are conducted in situ and in operando, under conditions of real application. This is expected to aid directly the rational design of surface properties in the processing of high-performance energy materials for fuel cells, solar cells, batteries, catalysts and photo-catalysts, as well as sensors.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.2c03216</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1822-7508</orcidid><orcidid>https://orcid.org/0000-0003-1461-951X</orcidid><orcidid>https://orcid.org/0000-0002-2218-4766</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2023-01, Vol.6 (2), p.865-875
issn 2574-0962
2574-0962
language eng
recordid cdi_acs_journals_10_1021_acsaem_2c03216
source American Chemical Society Journals
title Electron Probe Bridging Solid-State Chemistry and Surface Chemistry: Example of the TiO2‑O2 System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A04%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20Probe%20Bridging%20Solid-State%20Chemistry%20and%20Surface%20Chemistry:%20Example%20of%20the%20TiO2%E2%80%91O2%20System&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Bak,%20Tadeusz&rft.date=2023-01-23&rft.volume=6&rft.issue=2&rft.spage=865&rft.epage=875&rft.pages=865-875&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.2c03216&rft_dat=%3Cacs%3Ec081455610%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true