Energy Storage and Dielectric Properties of PbHfO3 Antiferroelectric Ceramics
Antiferroelectric (AFE) materials are regarded as one of the most hopeful candidates for pulse power capacitors due to their higher saturation polarization, lower remnant polarization, high power density, and fast charge–discharge speed. It is difficult to simultaneously obtain excellently the recov...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2022-10, Vol.5 (10), p.12174-12182 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12182 |
---|---|
container_issue | 10 |
container_start_page | 12174 |
container_title | ACS applied energy materials |
container_volume | 5 |
creator | Li, Shuifeng Ge, Pengzu Tang, Hui Tang, Xin-Gui Tang, Zhenhua Guo, Xiao-Bin Zeng, Siming Liu, Qiu-Xiang Jiang, Yan-Ping Li, Wenhua |
description | Antiferroelectric (AFE) materials are regarded as one of the most hopeful candidates for pulse power capacitors due to their higher saturation polarization, lower remnant polarization, high power density, and fast charge–discharge speed. It is difficult to simultaneously obtain excellently the recoverable energy density (W rec) and the energy efficiency (η) at present. In this work, PbHfO3 AFE ceramics are processed by the cold isostatic pressure (CIP) method. It is confirmed that the CIP method can reduce the grain sizes and ameliorate the ceramic’s microstructure and thus increase the average electric breakdown field strength up to 336 kV/cm compared to 269 kV/cm by the conventional solid-state (CS) method. An excellent W rec of 11.4 J/cm3 with a high η of 88.2% is achieved in the PbHfO3 ceramics by the CIP method at 342 kV/cm. Furthermore, it exhibits good stability in temperature and frequency and has a high discharge current density of 1557 A/cm2 and power density of 233 MW/cm3 with a rapid discharge speed (112 ns). Moreover, dielectric properties and Raman spectra of the sample by the CIP method are discussed and demonstrate that the sample encounters a phase transformation at 150 and 195 °C. The result in this work indicates that the PbHfO3 AFE ceramics by the CIP method will be a potential candidate for pulse power capacitors. |
doi_str_mv | 10.1021/acsaem.2c01679 |
format | Article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsaem_2c01679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b675749274</sourcerecordid><originalsourceid>FETCH-LOGICAL-a120t-312cf77d655f802c52061971e1aba2f1c4b024694a5a7f9720810ebefebdcf3e3</originalsourceid><addsrcrecordid>eNpNkEFLAzEUhIMoWGqvnnMWtr73djdpjmWtVqi0oJ6XbPalpLS7kqwH_72VFulp5jDMMJ8Q9whTBMJH65Llw5QcoNLmSoyo1EUGRtH1hb8Vk5R2AIAGFRkzEm-LjuP2R74PfbRblrZr5VPgPbshBic3sf_iOAROsvdy0yz9OpfzbgieY-z_YxVHewgu3Ykbb_eJJ2cdi8_nxUe1zFbrl9dqvsosEgxZjuS81q0qSz8DciWBQqOR0TaWPLqiASqUKWxptTeaYIbADXtuWudzzsfi4dR7vF3v-u_YHddqhPqPRX1iUZ9Z5L_wZ1Me</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Energy Storage and Dielectric Properties of PbHfO3 Antiferroelectric Ceramics</title><source>American Chemical Society Journals</source><creator>Li, Shuifeng ; Ge, Pengzu ; Tang, Hui ; Tang, Xin-Gui ; Tang, Zhenhua ; Guo, Xiao-Bin ; Zeng, Siming ; Liu, Qiu-Xiang ; Jiang, Yan-Ping ; Li, Wenhua</creator><creatorcontrib>Li, Shuifeng ; Ge, Pengzu ; Tang, Hui ; Tang, Xin-Gui ; Tang, Zhenhua ; Guo, Xiao-Bin ; Zeng, Siming ; Liu, Qiu-Xiang ; Jiang, Yan-Ping ; Li, Wenhua</creatorcontrib><description>Antiferroelectric (AFE) materials are regarded as one of the most hopeful candidates for pulse power capacitors due to their higher saturation polarization, lower remnant polarization, high power density, and fast charge–discharge speed. It is difficult to simultaneously obtain excellently the recoverable energy density (W rec) and the energy efficiency (η) at present. In this work, PbHfO3 AFE ceramics are processed by the cold isostatic pressure (CIP) method. It is confirmed that the CIP method can reduce the grain sizes and ameliorate the ceramic’s microstructure and thus increase the average electric breakdown field strength up to 336 kV/cm compared to 269 kV/cm by the conventional solid-state (CS) method. An excellent W rec of 11.4 J/cm3 with a high η of 88.2% is achieved in the PbHfO3 ceramics by the CIP method at 342 kV/cm. Furthermore, it exhibits good stability in temperature and frequency and has a high discharge current density of 1557 A/cm2 and power density of 233 MW/cm3 with a rapid discharge speed (112 ns). Moreover, dielectric properties and Raman spectra of the sample by the CIP method are discussed and demonstrate that the sample encounters a phase transformation at 150 and 195 °C. The result in this work indicates that the PbHfO3 AFE ceramics by the CIP method will be a potential candidate for pulse power capacitors.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.2c01679</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2022-10, Vol.5 (10), p.12174-12182</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6429-2098 ; 0000-0002-3354-2522 ; 0000-0002-5863-7149 ; 0000-0001-9821-6042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.2c01679$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.2c01679$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Li, Shuifeng</creatorcontrib><creatorcontrib>Ge, Pengzu</creatorcontrib><creatorcontrib>Tang, Hui</creatorcontrib><creatorcontrib>Tang, Xin-Gui</creatorcontrib><creatorcontrib>Tang, Zhenhua</creatorcontrib><creatorcontrib>Guo, Xiao-Bin</creatorcontrib><creatorcontrib>Zeng, Siming</creatorcontrib><creatorcontrib>Liu, Qiu-Xiang</creatorcontrib><creatorcontrib>Jiang, Yan-Ping</creatorcontrib><creatorcontrib>Li, Wenhua</creatorcontrib><title>Energy Storage and Dielectric Properties of PbHfO3 Antiferroelectric Ceramics</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Antiferroelectric (AFE) materials are regarded as one of the most hopeful candidates for pulse power capacitors due to their higher saturation polarization, lower remnant polarization, high power density, and fast charge–discharge speed. It is difficult to simultaneously obtain excellently the recoverable energy density (W rec) and the energy efficiency (η) at present. In this work, PbHfO3 AFE ceramics are processed by the cold isostatic pressure (CIP) method. It is confirmed that the CIP method can reduce the grain sizes and ameliorate the ceramic’s microstructure and thus increase the average electric breakdown field strength up to 336 kV/cm compared to 269 kV/cm by the conventional solid-state (CS) method. An excellent W rec of 11.4 J/cm3 with a high η of 88.2% is achieved in the PbHfO3 ceramics by the CIP method at 342 kV/cm. Furthermore, it exhibits good stability in temperature and frequency and has a high discharge current density of 1557 A/cm2 and power density of 233 MW/cm3 with a rapid discharge speed (112 ns). Moreover, dielectric properties and Raman spectra of the sample by the CIP method are discussed and demonstrate that the sample encounters a phase transformation at 150 and 195 °C. The result in this work indicates that the PbHfO3 AFE ceramics by the CIP method will be a potential candidate for pulse power capacitors.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkEFLAzEUhIMoWGqvnnMWtr73djdpjmWtVqi0oJ6XbPalpLS7kqwH_72VFulp5jDMMJ8Q9whTBMJH65Llw5QcoNLmSoyo1EUGRtH1hb8Vk5R2AIAGFRkzEm-LjuP2R74PfbRblrZr5VPgPbshBic3sf_iOAROsvdy0yz9OpfzbgieY-z_YxVHewgu3Ykbb_eJJ2cdi8_nxUe1zFbrl9dqvsosEgxZjuS81q0qSz8DciWBQqOR0TaWPLqiASqUKWxptTeaYIbADXtuWudzzsfi4dR7vF3v-u_YHddqhPqPRX1iUZ9Z5L_wZ1Me</recordid><startdate>20221024</startdate><enddate>20221024</enddate><creator>Li, Shuifeng</creator><creator>Ge, Pengzu</creator><creator>Tang, Hui</creator><creator>Tang, Xin-Gui</creator><creator>Tang, Zhenhua</creator><creator>Guo, Xiao-Bin</creator><creator>Zeng, Siming</creator><creator>Liu, Qiu-Xiang</creator><creator>Jiang, Yan-Ping</creator><creator>Li, Wenhua</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-6429-2098</orcidid><orcidid>https://orcid.org/0000-0002-3354-2522</orcidid><orcidid>https://orcid.org/0000-0002-5863-7149</orcidid><orcidid>https://orcid.org/0000-0001-9821-6042</orcidid></search><sort><creationdate>20221024</creationdate><title>Energy Storage and Dielectric Properties of PbHfO3 Antiferroelectric Ceramics</title><author>Li, Shuifeng ; Ge, Pengzu ; Tang, Hui ; Tang, Xin-Gui ; Tang, Zhenhua ; Guo, Xiao-Bin ; Zeng, Siming ; Liu, Qiu-Xiang ; Jiang, Yan-Ping ; Li, Wenhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a120t-312cf77d655f802c52061971e1aba2f1c4b024694a5a7f9720810ebefebdcf3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Shuifeng</creatorcontrib><creatorcontrib>Ge, Pengzu</creatorcontrib><creatorcontrib>Tang, Hui</creatorcontrib><creatorcontrib>Tang, Xin-Gui</creatorcontrib><creatorcontrib>Tang, Zhenhua</creatorcontrib><creatorcontrib>Guo, Xiao-Bin</creatorcontrib><creatorcontrib>Zeng, Siming</creatorcontrib><creatorcontrib>Liu, Qiu-Xiang</creatorcontrib><creatorcontrib>Jiang, Yan-Ping</creatorcontrib><creatorcontrib>Li, Wenhua</creatorcontrib><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Shuifeng</au><au>Ge, Pengzu</au><au>Tang, Hui</au><au>Tang, Xin-Gui</au><au>Tang, Zhenhua</au><au>Guo, Xiao-Bin</au><au>Zeng, Siming</au><au>Liu, Qiu-Xiang</au><au>Jiang, Yan-Ping</au><au>Li, Wenhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Storage and Dielectric Properties of PbHfO3 Antiferroelectric Ceramics</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2022-10-24</date><risdate>2022</risdate><volume>5</volume><issue>10</issue><spage>12174</spage><epage>12182</epage><pages>12174-12182</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Antiferroelectric (AFE) materials are regarded as one of the most hopeful candidates for pulse power capacitors due to their higher saturation polarization, lower remnant polarization, high power density, and fast charge–discharge speed. It is difficult to simultaneously obtain excellently the recoverable energy density (W rec) and the energy efficiency (η) at present. In this work, PbHfO3 AFE ceramics are processed by the cold isostatic pressure (CIP) method. It is confirmed that the CIP method can reduce the grain sizes and ameliorate the ceramic’s microstructure and thus increase the average electric breakdown field strength up to 336 kV/cm compared to 269 kV/cm by the conventional solid-state (CS) method. An excellent W rec of 11.4 J/cm3 with a high η of 88.2% is achieved in the PbHfO3 ceramics by the CIP method at 342 kV/cm. Furthermore, it exhibits good stability in temperature and frequency and has a high discharge current density of 1557 A/cm2 and power density of 233 MW/cm3 with a rapid discharge speed (112 ns). Moreover, dielectric properties and Raman spectra of the sample by the CIP method are discussed and demonstrate that the sample encounters a phase transformation at 150 and 195 °C. The result in this work indicates that the PbHfO3 AFE ceramics by the CIP method will be a potential candidate for pulse power capacitors.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.2c01679</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6429-2098</orcidid><orcidid>https://orcid.org/0000-0002-3354-2522</orcidid><orcidid>https://orcid.org/0000-0002-5863-7149</orcidid><orcidid>https://orcid.org/0000-0001-9821-6042</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0962 |
ispartof | ACS applied energy materials, 2022-10, Vol.5 (10), p.12174-12182 |
issn | 2574-0962 2574-0962 |
language | eng |
recordid | cdi_acs_journals_10_1021_acsaem_2c01679 |
source | American Chemical Society Journals |
title | Energy Storage and Dielectric Properties of PbHfO3 Antiferroelectric Ceramics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T14%3A35%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Storage%20and%20Dielectric%20Properties%20of%20PbHfO3%20Antiferroelectric%20Ceramics&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Li,%20Shuifeng&rft.date=2022-10-24&rft.volume=5&rft.issue=10&rft.spage=12174&rft.epage=12182&rft.pages=12174-12182&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.2c01679&rft_dat=%3Cacs%3Eb675749274%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |