Inverse Opal CuBi2O4 Photocathodes for Robust Photoelectrochemical Water Splitting

In general, p-type CuBi2O4 (CBO) photocathodes demonstrate excellent solar-to-hydrogen conversion efficiencies but have low quantum yields near the band-edge region (i.e., above 600 nm), which substantially impedes achieving photocurrent densities that match the theoretical values. This is the main...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2022-05, Vol.5 (5), p.6050-6058
Hauptverfasser: Reddy, D. Amaranatha, Kim, Yujin, Varma, Pooja, Gopannagari, Madhusudana, Reddy, K. Arun Joshi, Hong, Da Hye, Song, Inae, Kumar, D. Praveen, Kim, Tae Kyu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6058
container_issue 5
container_start_page 6050
container_title ACS applied energy materials
container_volume 5
creator Reddy, D. Amaranatha
Kim, Yujin
Varma, Pooja
Gopannagari, Madhusudana
Reddy, K. Arun Joshi
Hong, Da Hye
Song, Inae
Kumar, D. Praveen
Kim, Tae Kyu
description In general, p-type CuBi2O4 (CBO) photocathodes demonstrate excellent solar-to-hydrogen conversion efficiencies but have low quantum yields near the band-edge region (i.e., above 600 nm), which substantially impedes achieving photocurrent densities that match the theoretical values. This is the main obstacle in the construction of photoelectrochemical (PEC) water-splitting cells. To overcome this difficulty, we fabricated inverse opal-like structured CBO (IO-CBO) photocathodes using a layered self-assembly approach. The fabricated photocathodes have an interconnected macroporous structure that supports enhanced visible-light-harvesting capabilities and improves intrinsic charge-carrier transport properties. Optimized IO-CBO cathodes exhibit a high photocurrent density of 2.95 mA cm–2 at 0.6 V versus a reversible hydrogen electrode with stability over 2 h of operation. Furthermore, IO-CBO cathodes have exceptional near-band-edge photon harvesting and quantum yields of 15% at 600 nm, which is unprecedented for CuBi2O4-type photocathodes. We believe that the present work promotes the application of ternary-based nanostructures in solar-driven hydrogen production.
doi_str_mv 10.1021/acsaem.2c00469
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsaem_2c00469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a313254384</sourcerecordid><originalsourceid>FETCH-LOGICAL-a190t-f11f0cd4eb1ebb6afccc3160028b4ea06f8b983060e0fbe1788abb05d716de403</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxRdRsNRePecspM5s0k32qMGPQiFSFY9hdzNrUtJsyW78-42kB0_vweO9YX6M3SKsETjeK-MVHdfcAKRCXrAF32RpDFLwy3_-mq28PwAAShRcygXbb_sfGjxF5Ul1UTE-trxMo7fGBWdUaFxNPrJuiPZOjz7MAXVkwuBMQ8fWTK0vFWiI3k9dG0Lbf9-wK6s6T6uzLtnn89NH8Rrvypdt8bCLFUoIsUW0YOqUNJLWQlljTIICgOc6JQXC5lrmCQggsJowy3OlNWzqDEVNKSRLdjfvTr9XBzcO_XStQqj-gFQzkOoMJPkFXh1V8A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inverse Opal CuBi2O4 Photocathodes for Robust Photoelectrochemical Water Splitting</title><source>American Chemical Society Journals</source><creator>Reddy, D. Amaranatha ; Kim, Yujin ; Varma, Pooja ; Gopannagari, Madhusudana ; Reddy, K. Arun Joshi ; Hong, Da Hye ; Song, Inae ; Kumar, D. Praveen ; Kim, Tae Kyu</creator><creatorcontrib>Reddy, D. Amaranatha ; Kim, Yujin ; Varma, Pooja ; Gopannagari, Madhusudana ; Reddy, K. Arun Joshi ; Hong, Da Hye ; Song, Inae ; Kumar, D. Praveen ; Kim, Tae Kyu</creatorcontrib><description>In general, p-type CuBi2O4 (CBO) photocathodes demonstrate excellent solar-to-hydrogen conversion efficiencies but have low quantum yields near the band-edge region (i.e., above 600 nm), which substantially impedes achieving photocurrent densities that match the theoretical values. This is the main obstacle in the construction of photoelectrochemical (PEC) water-splitting cells. To overcome this difficulty, we fabricated inverse opal-like structured CBO (IO-CBO) photocathodes using a layered self-assembly approach. The fabricated photocathodes have an interconnected macroporous structure that supports enhanced visible-light-harvesting capabilities and improves intrinsic charge-carrier transport properties. Optimized IO-CBO cathodes exhibit a high photocurrent density of 2.95 mA cm–2 at 0.6 V versus a reversible hydrogen electrode with stability over 2 h of operation. Furthermore, IO-CBO cathodes have exceptional near-band-edge photon harvesting and quantum yields of 15% at 600 nm, which is unprecedented for CuBi2O4-type photocathodes. We believe that the present work promotes the application of ternary-based nanostructures in solar-driven hydrogen production.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.2c00469</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2022-05, Vol.5 (5), p.6050-6058</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9578-5722 ; 0000-0003-2823-0708</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.2c00469$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.2c00469$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Reddy, D. Amaranatha</creatorcontrib><creatorcontrib>Kim, Yujin</creatorcontrib><creatorcontrib>Varma, Pooja</creatorcontrib><creatorcontrib>Gopannagari, Madhusudana</creatorcontrib><creatorcontrib>Reddy, K. Arun Joshi</creatorcontrib><creatorcontrib>Hong, Da Hye</creatorcontrib><creatorcontrib>Song, Inae</creatorcontrib><creatorcontrib>Kumar, D. Praveen</creatorcontrib><creatorcontrib>Kim, Tae Kyu</creatorcontrib><title>Inverse Opal CuBi2O4 Photocathodes for Robust Photoelectrochemical Water Splitting</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>In general, p-type CuBi2O4 (CBO) photocathodes demonstrate excellent solar-to-hydrogen conversion efficiencies but have low quantum yields near the band-edge region (i.e., above 600 nm), which substantially impedes achieving photocurrent densities that match the theoretical values. This is the main obstacle in the construction of photoelectrochemical (PEC) water-splitting cells. To overcome this difficulty, we fabricated inverse opal-like structured CBO (IO-CBO) photocathodes using a layered self-assembly approach. The fabricated photocathodes have an interconnected macroporous structure that supports enhanced visible-light-harvesting capabilities and improves intrinsic charge-carrier transport properties. Optimized IO-CBO cathodes exhibit a high photocurrent density of 2.95 mA cm–2 at 0.6 V versus a reversible hydrogen electrode with stability over 2 h of operation. Furthermore, IO-CBO cathodes have exceptional near-band-edge photon harvesting and quantum yields of 15% at 600 nm, which is unprecedented for CuBi2O4-type photocathodes. We believe that the present work promotes the application of ternary-based nanostructures in solar-driven hydrogen production.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkM1Lw0AQxRdRsNRePecspM5s0k32qMGPQiFSFY9hdzNrUtJsyW78-42kB0_vweO9YX6M3SKsETjeK-MVHdfcAKRCXrAF32RpDFLwy3_-mq28PwAAShRcygXbb_sfGjxF5Ul1UTE-trxMo7fGBWdUaFxNPrJuiPZOjz7MAXVkwuBMQ8fWTK0vFWiI3k9dG0Lbf9-wK6s6T6uzLtnn89NH8Rrvypdt8bCLFUoIsUW0YOqUNJLWQlljTIICgOc6JQXC5lrmCQggsJowy3OlNWzqDEVNKSRLdjfvTr9XBzcO_XStQqj-gFQzkOoMJPkFXh1V8A</recordid><startdate>20220523</startdate><enddate>20220523</enddate><creator>Reddy, D. Amaranatha</creator><creator>Kim, Yujin</creator><creator>Varma, Pooja</creator><creator>Gopannagari, Madhusudana</creator><creator>Reddy, K. Arun Joshi</creator><creator>Hong, Da Hye</creator><creator>Song, Inae</creator><creator>Kumar, D. Praveen</creator><creator>Kim, Tae Kyu</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-9578-5722</orcidid><orcidid>https://orcid.org/0000-0003-2823-0708</orcidid></search><sort><creationdate>20220523</creationdate><title>Inverse Opal CuBi2O4 Photocathodes for Robust Photoelectrochemical Water Splitting</title><author>Reddy, D. Amaranatha ; Kim, Yujin ; Varma, Pooja ; Gopannagari, Madhusudana ; Reddy, K. Arun Joshi ; Hong, Da Hye ; Song, Inae ; Kumar, D. Praveen ; Kim, Tae Kyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a190t-f11f0cd4eb1ebb6afccc3160028b4ea06f8b983060e0fbe1788abb05d716de403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reddy, D. Amaranatha</creatorcontrib><creatorcontrib>Kim, Yujin</creatorcontrib><creatorcontrib>Varma, Pooja</creatorcontrib><creatorcontrib>Gopannagari, Madhusudana</creatorcontrib><creatorcontrib>Reddy, K. Arun Joshi</creatorcontrib><creatorcontrib>Hong, Da Hye</creatorcontrib><creatorcontrib>Song, Inae</creatorcontrib><creatorcontrib>Kumar, D. Praveen</creatorcontrib><creatorcontrib>Kim, Tae Kyu</creatorcontrib><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reddy, D. Amaranatha</au><au>Kim, Yujin</au><au>Varma, Pooja</au><au>Gopannagari, Madhusudana</au><au>Reddy, K. Arun Joshi</au><au>Hong, Da Hye</au><au>Song, Inae</au><au>Kumar, D. Praveen</au><au>Kim, Tae Kyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse Opal CuBi2O4 Photocathodes for Robust Photoelectrochemical Water Splitting</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2022-05-23</date><risdate>2022</risdate><volume>5</volume><issue>5</issue><spage>6050</spage><epage>6058</epage><pages>6050-6058</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>In general, p-type CuBi2O4 (CBO) photocathodes demonstrate excellent solar-to-hydrogen conversion efficiencies but have low quantum yields near the band-edge region (i.e., above 600 nm), which substantially impedes achieving photocurrent densities that match the theoretical values. This is the main obstacle in the construction of photoelectrochemical (PEC) water-splitting cells. To overcome this difficulty, we fabricated inverse opal-like structured CBO (IO-CBO) photocathodes using a layered self-assembly approach. The fabricated photocathodes have an interconnected macroporous structure that supports enhanced visible-light-harvesting capabilities and improves intrinsic charge-carrier transport properties. Optimized IO-CBO cathodes exhibit a high photocurrent density of 2.95 mA cm–2 at 0.6 V versus a reversible hydrogen electrode with stability over 2 h of operation. Furthermore, IO-CBO cathodes have exceptional near-band-edge photon harvesting and quantum yields of 15% at 600 nm, which is unprecedented for CuBi2O4-type photocathodes. We believe that the present work promotes the application of ternary-based nanostructures in solar-driven hydrogen production.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.2c00469</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9578-5722</orcidid><orcidid>https://orcid.org/0000-0003-2823-0708</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2022-05, Vol.5 (5), p.6050-6058
issn 2574-0962
2574-0962
language eng
recordid cdi_acs_journals_10_1021_acsaem_2c00469
source American Chemical Society Journals
title Inverse Opal CuBi2O4 Photocathodes for Robust Photoelectrochemical Water Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20Opal%20CuBi2O4%20Photocathodes%20for%20Robust%20Photoelectrochemical%20Water%20Splitting&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Reddy,%20D.%20Amaranatha&rft.date=2022-05-23&rft.volume=5&rft.issue=5&rft.spage=6050&rft.epage=6058&rft.pages=6050-6058&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.2c00469&rft_dat=%3Cacs%3Ea313254384%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true