Effect of Li Excess on Electrochemical Performance of Ni-Rich LiNi0.9Co0.05Mn0.05O2 Cathode Materials for Li-Ion Batteries

Nickel-rich layered oxide cathode materials having a Ni content of ≥90% have great potential for use in next-generation lithium-ion batteries (LIBs) due to their high energy densities and relatively low cost. They suffer, however, from poor cycling performance and rate capability, significantly hamp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2021-12, Vol.4 (12), p.14295-14308
Hauptverfasser: Abebe, Eyob Belew, Yang, Chun-Chen, Wu, She-Huang, Chien, Wen-Chen, Li, Ying-Jeng James
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14308
container_issue 12
container_start_page 14295
container_title ACS applied energy materials
container_volume 4
creator Abebe, Eyob Belew
Yang, Chun-Chen
Wu, She-Huang
Chien, Wen-Chen
Li, Ying-Jeng James
description Nickel-rich layered oxide cathode materials having a Ni content of ≥90% have great potential for use in next-generation lithium-ion batteries (LIBs) due to their high energy densities and relatively low cost. They suffer, however, from poor cycling performance and rate capability, significantly hampering their widespread applicability. In this study, we synthesized a Ni-rich precursor through a co-precipitation method and added different amounts of the Li excess on the precursors using a solid-state method to obtain sintered Li1+x (Ni0.9Co0.05Mn0.05)1–x O2 (denoted as L1+x -NCM; x = 0.00, 0.02, 0.04, 0.06, and 0.08) transition metal (TM) oxide cathode materials. The L1+x -NCM cathode having a Li excess of 4% exhibited a discharge capacity of ca. 216.17 mA h g–1 at 2.7–4.3 V, 0.1 C and retained 95.7% of its initial discharge capacity (ca. 181.39 mA h g–1) after 100 cycles of 1 C charge/discharge which is the best performance as compared with stoichiometric Li1+x (Ni0.9Co0.05Mn0.05)1–x O2 (i.e., x = 0, Li/TM = 1:1). Furthermore, a high-rate capability of ca. 162.92 mA h g–1 at a rate of 10 C led to the 4% Li excess, optimizing the electrochemical performance, relative to the other Li-excess samples. Ex/in situ X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy revealed that the 4% Li excess in the Ni-rich NCM90 cathode material (i) decreased the Li+/Ni2+ disorder by increasing the content of Ni3+ in the TM slab, (ii) increased the crystallinity, and (iii) accelerated Li+-ion transport by widening the Li slab. Furthermore, electrochemical impedance spectroscopy and cyclic voltammetry confirmed that the appropriate Li excess lowered the electrochemical impedance and improved the reversibility of the electrochemical reaction. Therefore, our results revealed that NCM90 cathode materials featuring an optimal Li excess are potential candidates for use in next-generation LIBs.
doi_str_mv 10.1021/acsaem.1c03004
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsaem_1c03004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h24949992</sourcerecordid><originalsourceid>FETCH-LOGICAL-a120t-cec6f804976b144223843858c22c7f8e9f0491bfffef6819d4e4f1220df9983f3</originalsourceid><addsrcrecordid>eNpNUMFKw0AQXUTBUnv1vGchcXazSXePGqIW0lZEz2G7maEpbRayEcSvd0N78DIzvPfmDfMYuxeQCpDi0bpg8ZQKBxmAumIzmS9VAqaQ1__mW7YI4QAAwohCGjNjvxURupF74nXHqx-HIXDf8-oY0cG7PZ46Z4_8HQfyw8n2Diftpks-OrePO5sOUlN6SCFf91PdSl7ace9b5Gs74tDZY-BxN2qTVXR-tuOEYrhjNxQ5XFz6nH29VJ_lW1JvX1flU51YIWFMHLqCNCizLHZCKSkzrTKdayelW5JGQ5ETO4p_UKGFaRUqElJCS8bojLI5ezj7xoyag_8e-nitEdBMwTXn4JpLcNkflxNfwQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of Li Excess on Electrochemical Performance of Ni-Rich LiNi0.9Co0.05Mn0.05O2 Cathode Materials for Li-Ion Batteries</title><source>ACS Publications</source><creator>Abebe, Eyob Belew ; Yang, Chun-Chen ; Wu, She-Huang ; Chien, Wen-Chen ; Li, Ying-Jeng James</creator><creatorcontrib>Abebe, Eyob Belew ; Yang, Chun-Chen ; Wu, She-Huang ; Chien, Wen-Chen ; Li, Ying-Jeng James</creatorcontrib><description>Nickel-rich layered oxide cathode materials having a Ni content of ≥90% have great potential for use in next-generation lithium-ion batteries (LIBs) due to their high energy densities and relatively low cost. They suffer, however, from poor cycling performance and rate capability, significantly hampering their widespread applicability. In this study, we synthesized a Ni-rich precursor through a co-precipitation method and added different amounts of the Li excess on the precursors using a solid-state method to obtain sintered Li1+x (Ni0.9Co0.05Mn0.05)1–x O2 (denoted as L1+x -NCM; x = 0.00, 0.02, 0.04, 0.06, and 0.08) transition metal (TM) oxide cathode materials. The L1+x -NCM cathode having a Li excess of 4% exhibited a discharge capacity of ca. 216.17 mA h g–1 at 2.7–4.3 V, 0.1 C and retained 95.7% of its initial discharge capacity (ca. 181.39 mA h g–1) after 100 cycles of 1 C charge/discharge which is the best performance as compared with stoichiometric Li1+x (Ni0.9Co0.05Mn0.05)1–x O2 (i.e., x = 0, Li/TM = 1:1). Furthermore, a high-rate capability of ca. 162.92 mA h g–1 at a rate of 10 C led to the 4% Li excess, optimizing the electrochemical performance, relative to the other Li-excess samples. Ex/in situ X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy revealed that the 4% Li excess in the Ni-rich NCM90 cathode material (i) decreased the Li+/Ni2+ disorder by increasing the content of Ni3+ in the TM slab, (ii) increased the crystallinity, and (iii) accelerated Li+-ion transport by widening the Li slab. Furthermore, electrochemical impedance spectroscopy and cyclic voltammetry confirmed that the appropriate Li excess lowered the electrochemical impedance and improved the reversibility of the electrochemical reaction. Therefore, our results revealed that NCM90 cathode materials featuring an optimal Li excess are potential candidates for use in next-generation LIBs.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.1c03004</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2021-12, Vol.4 (12), p.14295-14308</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4304-2345 ; 0000-0002-3832-9800 ; 0000-0003-0017-9293 ; 0000-0003-1165-9444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.1c03004$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.1c03004$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Abebe, Eyob Belew</creatorcontrib><creatorcontrib>Yang, Chun-Chen</creatorcontrib><creatorcontrib>Wu, She-Huang</creatorcontrib><creatorcontrib>Chien, Wen-Chen</creatorcontrib><creatorcontrib>Li, Ying-Jeng James</creatorcontrib><title>Effect of Li Excess on Electrochemical Performance of Ni-Rich LiNi0.9Co0.05Mn0.05O2 Cathode Materials for Li-Ion Batteries</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Nickel-rich layered oxide cathode materials having a Ni content of ≥90% have great potential for use in next-generation lithium-ion batteries (LIBs) due to their high energy densities and relatively low cost. They suffer, however, from poor cycling performance and rate capability, significantly hampering their widespread applicability. In this study, we synthesized a Ni-rich precursor through a co-precipitation method and added different amounts of the Li excess on the precursors using a solid-state method to obtain sintered Li1+x (Ni0.9Co0.05Mn0.05)1–x O2 (denoted as L1+x -NCM; x = 0.00, 0.02, 0.04, 0.06, and 0.08) transition metal (TM) oxide cathode materials. The L1+x -NCM cathode having a Li excess of 4% exhibited a discharge capacity of ca. 216.17 mA h g–1 at 2.7–4.3 V, 0.1 C and retained 95.7% of its initial discharge capacity (ca. 181.39 mA h g–1) after 100 cycles of 1 C charge/discharge which is the best performance as compared with stoichiometric Li1+x (Ni0.9Co0.05Mn0.05)1–x O2 (i.e., x = 0, Li/TM = 1:1). Furthermore, a high-rate capability of ca. 162.92 mA h g–1 at a rate of 10 C led to the 4% Li excess, optimizing the electrochemical performance, relative to the other Li-excess samples. Ex/in situ X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy revealed that the 4% Li excess in the Ni-rich NCM90 cathode material (i) decreased the Li+/Ni2+ disorder by increasing the content of Ni3+ in the TM slab, (ii) increased the crystallinity, and (iii) accelerated Li+-ion transport by widening the Li slab. Furthermore, electrochemical impedance spectroscopy and cyclic voltammetry confirmed that the appropriate Li excess lowered the electrochemical impedance and improved the reversibility of the electrochemical reaction. Therefore, our results revealed that NCM90 cathode materials featuring an optimal Li excess are potential candidates for use in next-generation LIBs.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNUMFKw0AQXUTBUnv1vGchcXazSXePGqIW0lZEz2G7maEpbRayEcSvd0N78DIzvPfmDfMYuxeQCpDi0bpg8ZQKBxmAumIzmS9VAqaQ1__mW7YI4QAAwohCGjNjvxURupF74nXHqx-HIXDf8-oY0cG7PZ46Z4_8HQfyw8n2Diftpks-OrePO5sOUlN6SCFf91PdSl7ace9b5Gs74tDZY-BxN2qTVXR-tuOEYrhjNxQ5XFz6nH29VJ_lW1JvX1flU51YIWFMHLqCNCizLHZCKSkzrTKdayelW5JGQ5ETO4p_UKGFaRUqElJCS8bojLI5ezj7xoyag_8e-nitEdBMwTXn4JpLcNkflxNfwQ</recordid><startdate>20211227</startdate><enddate>20211227</enddate><creator>Abebe, Eyob Belew</creator><creator>Yang, Chun-Chen</creator><creator>Wu, She-Huang</creator><creator>Chien, Wen-Chen</creator><creator>Li, Ying-Jeng James</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-4304-2345</orcidid><orcidid>https://orcid.org/0000-0002-3832-9800</orcidid><orcidid>https://orcid.org/0000-0003-0017-9293</orcidid><orcidid>https://orcid.org/0000-0003-1165-9444</orcidid></search><sort><creationdate>20211227</creationdate><title>Effect of Li Excess on Electrochemical Performance of Ni-Rich LiNi0.9Co0.05Mn0.05O2 Cathode Materials for Li-Ion Batteries</title><author>Abebe, Eyob Belew ; Yang, Chun-Chen ; Wu, She-Huang ; Chien, Wen-Chen ; Li, Ying-Jeng James</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a120t-cec6f804976b144223843858c22c7f8e9f0491bfffef6819d4e4f1220df9983f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abebe, Eyob Belew</creatorcontrib><creatorcontrib>Yang, Chun-Chen</creatorcontrib><creatorcontrib>Wu, She-Huang</creatorcontrib><creatorcontrib>Chien, Wen-Chen</creatorcontrib><creatorcontrib>Li, Ying-Jeng James</creatorcontrib><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abebe, Eyob Belew</au><au>Yang, Chun-Chen</au><au>Wu, She-Huang</au><au>Chien, Wen-Chen</au><au>Li, Ying-Jeng James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Li Excess on Electrochemical Performance of Ni-Rich LiNi0.9Co0.05Mn0.05O2 Cathode Materials for Li-Ion Batteries</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2021-12-27</date><risdate>2021</risdate><volume>4</volume><issue>12</issue><spage>14295</spage><epage>14308</epage><pages>14295-14308</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Nickel-rich layered oxide cathode materials having a Ni content of ≥90% have great potential for use in next-generation lithium-ion batteries (LIBs) due to their high energy densities and relatively low cost. They suffer, however, from poor cycling performance and rate capability, significantly hampering their widespread applicability. In this study, we synthesized a Ni-rich precursor through a co-precipitation method and added different amounts of the Li excess on the precursors using a solid-state method to obtain sintered Li1+x (Ni0.9Co0.05Mn0.05)1–x O2 (denoted as L1+x -NCM; x = 0.00, 0.02, 0.04, 0.06, and 0.08) transition metal (TM) oxide cathode materials. The L1+x -NCM cathode having a Li excess of 4% exhibited a discharge capacity of ca. 216.17 mA h g–1 at 2.7–4.3 V, 0.1 C and retained 95.7% of its initial discharge capacity (ca. 181.39 mA h g–1) after 100 cycles of 1 C charge/discharge which is the best performance as compared with stoichiometric Li1+x (Ni0.9Co0.05Mn0.05)1–x O2 (i.e., x = 0, Li/TM = 1:1). Furthermore, a high-rate capability of ca. 162.92 mA h g–1 at a rate of 10 C led to the 4% Li excess, optimizing the electrochemical performance, relative to the other Li-excess samples. Ex/in situ X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy revealed that the 4% Li excess in the Ni-rich NCM90 cathode material (i) decreased the Li+/Ni2+ disorder by increasing the content of Ni3+ in the TM slab, (ii) increased the crystallinity, and (iii) accelerated Li+-ion transport by widening the Li slab. Furthermore, electrochemical impedance spectroscopy and cyclic voltammetry confirmed that the appropriate Li excess lowered the electrochemical impedance and improved the reversibility of the electrochemical reaction. Therefore, our results revealed that NCM90 cathode materials featuring an optimal Li excess are potential candidates for use in next-generation LIBs.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.1c03004</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4304-2345</orcidid><orcidid>https://orcid.org/0000-0002-3832-9800</orcidid><orcidid>https://orcid.org/0000-0003-0017-9293</orcidid><orcidid>https://orcid.org/0000-0003-1165-9444</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2021-12, Vol.4 (12), p.14295-14308
issn 2574-0962
2574-0962
language eng
recordid cdi_acs_journals_10_1021_acsaem_1c03004
source ACS Publications
title Effect of Li Excess on Electrochemical Performance of Ni-Rich LiNi0.9Co0.05Mn0.05O2 Cathode Materials for Li-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A49%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Li%20Excess%20on%20Electrochemical%20Performance%20of%20Ni-Rich%20LiNi0.9Co0.05Mn0.05O2%20Cathode%20Materials%20for%20Li-Ion%20Batteries&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Abebe,%20Eyob%20Belew&rft.date=2021-12-27&rft.volume=4&rft.issue=12&rft.spage=14295&rft.epage=14308&rft.pages=14295-14308&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.1c03004&rft_dat=%3Cacs%3Eh24949992%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true