Anisotropy of Microstructure and Its Influence on Thermoelectricity: The Case of Cu2Te–Sb2Te3 Eutectic
Using a set of controlled in situ grown lamellar composites of (Cu2Te)62.02–(Sb2Te3)37.98, we report a remarkable variation of transport properties of thermoelectricity not only as a function of microstructural length scale but also as a function of direction-dependent arrangement of the phases and...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2021-10, Vol.4 (10), p.11867-11877 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11877 |
---|---|
container_issue | 10 |
container_start_page | 11867 |
container_title | ACS applied energy materials |
container_volume | 4 |
creator | Mukherjee, Shriparna Aramanda, Shanmukha Kiran Legese, Surafel Shiferaw Riss, Alexander Rogl, Gerda Femi, Olu Emmanuel Bauer, Ernst Rogl, Peter Franz Chattopadhyay, Kamanio |
description | Using a set of controlled in situ grown lamellar composites of (Cu2Te)62.02–(Sb2Te3)37.98, we report a remarkable variation of transport properties of thermoelectricity not only as a function of microstructural length scale but also as a function of direction-dependent arrangement of the phases and hence their interfaces. A quantitative evaluation of the microstructure along the transverse and the longitudinal directions of growth, imposed by the temperature gradient and growth rate in a unidirectional solidification setup, has been carried out. The microstructure is quantified through image analysis using fast Fourier transforms as well as a cluster base connectivity model and is further correlated with the thermoelectric transport properties. A marked anisotropy of properties as a function of measurement direction in the microstructural landscape could be observed. A maximum power factor of ∼1.4 mW m–1 K–2 and a figure of merit of 0.29 could be obtained at 580 K along the transverse direction for the sample with the characteristic microstructural length scale of 2.41 μm. This has an implication in engineering a thermoelectric device in terms of engineering power factor and output power density. For a ΔT of 250 K, we report a difference of 0.4 W cm–2 in output power density between the transverse and the longitudinal directions that have an identical microstructural length scale of 2.41 μm. |
doi_str_mv | 10.1021/acsaem.1c02664 |
format | Article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsaem_1c02664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d6311009</sourcerecordid><originalsourceid>FETCH-LOGICAL-a186t-3d304e6f733fa76889805a487efa3b44d56eba62bf42a89a65fd1b9bdfd618ef3</originalsourceid><addsrcrecordid>eNpNkL1qwzAcxEVpoSHN2llzwam-LEvdgknbQEqHurOR5b-Ig2MVSR6y9R36hn2SOiRDpzuO4w5-CN1TsqSE0Udjo4HDklrCpBRXaMbyQmRES3b9z9-iRYx7QgjVVDKtZ2i3GrroU_BfR-wdfuts8DGF0aYxADZDizcp4s3g-hEGC9gPuNpBOHjowabQ2S4dn04RLk2E00Q5sgp-v38-mkk5Xo9pKnb2Dt0400dYXHSOPp_XVfmabd9fNuVqmxmqZMp4y4kA6QrOnSmkUlqR3AhVgDO8EaLNJTRGssYJZpQ2MnctbXTTulZSBY7P0cN5dyJS7_0YhumtpqQ-YarPmOoLJv4HVbleBg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anisotropy of Microstructure and Its Influence on Thermoelectricity: The Case of Cu2Te–Sb2Te3 Eutectic</title><source>American Chemical Society Journals</source><creator>Mukherjee, Shriparna ; Aramanda, Shanmukha Kiran ; Legese, Surafel Shiferaw ; Riss, Alexander ; Rogl, Gerda ; Femi, Olu Emmanuel ; Bauer, Ernst ; Rogl, Peter Franz ; Chattopadhyay, Kamanio</creator><creatorcontrib>Mukherjee, Shriparna ; Aramanda, Shanmukha Kiran ; Legese, Surafel Shiferaw ; Riss, Alexander ; Rogl, Gerda ; Femi, Olu Emmanuel ; Bauer, Ernst ; Rogl, Peter Franz ; Chattopadhyay, Kamanio</creatorcontrib><description>Using a set of controlled in situ grown lamellar composites of (Cu2Te)62.02–(Sb2Te3)37.98, we report a remarkable variation of transport properties of thermoelectricity not only as a function of microstructural length scale but also as a function of direction-dependent arrangement of the phases and hence their interfaces. A quantitative evaluation of the microstructure along the transverse and the longitudinal directions of growth, imposed by the temperature gradient and growth rate in a unidirectional solidification setup, has been carried out. The microstructure is quantified through image analysis using fast Fourier transforms as well as a cluster base connectivity model and is further correlated with the thermoelectric transport properties. A marked anisotropy of properties as a function of measurement direction in the microstructural landscape could be observed. A maximum power factor of ∼1.4 mW m–1 K–2 and a figure of merit of 0.29 could be obtained at 580 K along the transverse direction for the sample with the characteristic microstructural length scale of 2.41 μm. This has an implication in engineering a thermoelectric device in terms of engineering power factor and output power density. For a ΔT of 250 K, we report a difference of 0.4 W cm–2 in output power density between the transverse and the longitudinal directions that have an identical microstructural length scale of 2.41 μm.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.1c02664</identifier><language>eng ; jpn</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2021-10, Vol.4 (10), p.11867-11877</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6069-7968 ; 0000-0002-1941-5551 ; 0000-0001-9415-2141 ; 0000-0002-7733-1612 ; 0000-0002-8056-5006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.1c02664$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.1c02664$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Mukherjee, Shriparna</creatorcontrib><creatorcontrib>Aramanda, Shanmukha Kiran</creatorcontrib><creatorcontrib>Legese, Surafel Shiferaw</creatorcontrib><creatorcontrib>Riss, Alexander</creatorcontrib><creatorcontrib>Rogl, Gerda</creatorcontrib><creatorcontrib>Femi, Olu Emmanuel</creatorcontrib><creatorcontrib>Bauer, Ernst</creatorcontrib><creatorcontrib>Rogl, Peter Franz</creatorcontrib><creatorcontrib>Chattopadhyay, Kamanio</creatorcontrib><title>Anisotropy of Microstructure and Its Influence on Thermoelectricity: The Case of Cu2Te–Sb2Te3 Eutectic</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Using a set of controlled in situ grown lamellar composites of (Cu2Te)62.02–(Sb2Te3)37.98, we report a remarkable variation of transport properties of thermoelectricity not only as a function of microstructural length scale but also as a function of direction-dependent arrangement of the phases and hence their interfaces. A quantitative evaluation of the microstructure along the transverse and the longitudinal directions of growth, imposed by the temperature gradient and growth rate in a unidirectional solidification setup, has been carried out. The microstructure is quantified through image analysis using fast Fourier transforms as well as a cluster base connectivity model and is further correlated with the thermoelectric transport properties. A marked anisotropy of properties as a function of measurement direction in the microstructural landscape could be observed. A maximum power factor of ∼1.4 mW m–1 K–2 and a figure of merit of 0.29 could be obtained at 580 K along the transverse direction for the sample with the characteristic microstructural length scale of 2.41 μm. This has an implication in engineering a thermoelectric device in terms of engineering power factor and output power density. For a ΔT of 250 K, we report a difference of 0.4 W cm–2 in output power density between the transverse and the longitudinal directions that have an identical microstructural length scale of 2.41 μm.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkL1qwzAcxEVpoSHN2llzwam-LEvdgknbQEqHurOR5b-Ig2MVSR6y9R36hn2SOiRDpzuO4w5-CN1TsqSE0Udjo4HDklrCpBRXaMbyQmRES3b9z9-iRYx7QgjVVDKtZ2i3GrroU_BfR-wdfuts8DGF0aYxADZDizcp4s3g-hEGC9gPuNpBOHjowabQ2S4dn04RLk2E00Q5sgp-v38-mkk5Xo9pKnb2Dt0400dYXHSOPp_XVfmabd9fNuVqmxmqZMp4y4kA6QrOnSmkUlqR3AhVgDO8EaLNJTRGssYJZpQ2MnctbXTTulZSBY7P0cN5dyJS7_0YhumtpqQ-YarPmOoLJv4HVbleBg</recordid><startdate>20211025</startdate><enddate>20211025</enddate><creator>Mukherjee, Shriparna</creator><creator>Aramanda, Shanmukha Kiran</creator><creator>Legese, Surafel Shiferaw</creator><creator>Riss, Alexander</creator><creator>Rogl, Gerda</creator><creator>Femi, Olu Emmanuel</creator><creator>Bauer, Ernst</creator><creator>Rogl, Peter Franz</creator><creator>Chattopadhyay, Kamanio</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-6069-7968</orcidid><orcidid>https://orcid.org/0000-0002-1941-5551</orcidid><orcidid>https://orcid.org/0000-0001-9415-2141</orcidid><orcidid>https://orcid.org/0000-0002-7733-1612</orcidid><orcidid>https://orcid.org/0000-0002-8056-5006</orcidid></search><sort><creationdate>20211025</creationdate><title>Anisotropy of Microstructure and Its Influence on Thermoelectricity: The Case of Cu2Te–Sb2Te3 Eutectic</title><author>Mukherjee, Shriparna ; Aramanda, Shanmukha Kiran ; Legese, Surafel Shiferaw ; Riss, Alexander ; Rogl, Gerda ; Femi, Olu Emmanuel ; Bauer, Ernst ; Rogl, Peter Franz ; Chattopadhyay, Kamanio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a186t-3d304e6f733fa76889805a487efa3b44d56eba62bf42a89a65fd1b9bdfd618ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Shriparna</creatorcontrib><creatorcontrib>Aramanda, Shanmukha Kiran</creatorcontrib><creatorcontrib>Legese, Surafel Shiferaw</creatorcontrib><creatorcontrib>Riss, Alexander</creatorcontrib><creatorcontrib>Rogl, Gerda</creatorcontrib><creatorcontrib>Femi, Olu Emmanuel</creatorcontrib><creatorcontrib>Bauer, Ernst</creatorcontrib><creatorcontrib>Rogl, Peter Franz</creatorcontrib><creatorcontrib>Chattopadhyay, Kamanio</creatorcontrib><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Shriparna</au><au>Aramanda, Shanmukha Kiran</au><au>Legese, Surafel Shiferaw</au><au>Riss, Alexander</au><au>Rogl, Gerda</au><au>Femi, Olu Emmanuel</au><au>Bauer, Ernst</au><au>Rogl, Peter Franz</au><au>Chattopadhyay, Kamanio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropy of Microstructure and Its Influence on Thermoelectricity: The Case of Cu2Te–Sb2Te3 Eutectic</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2021-10-25</date><risdate>2021</risdate><volume>4</volume><issue>10</issue><spage>11867</spage><epage>11877</epage><pages>11867-11877</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Using a set of controlled in situ grown lamellar composites of (Cu2Te)62.02–(Sb2Te3)37.98, we report a remarkable variation of transport properties of thermoelectricity not only as a function of microstructural length scale but also as a function of direction-dependent arrangement of the phases and hence their interfaces. A quantitative evaluation of the microstructure along the transverse and the longitudinal directions of growth, imposed by the temperature gradient and growth rate in a unidirectional solidification setup, has been carried out. The microstructure is quantified through image analysis using fast Fourier transforms as well as a cluster base connectivity model and is further correlated with the thermoelectric transport properties. A marked anisotropy of properties as a function of measurement direction in the microstructural landscape could be observed. A maximum power factor of ∼1.4 mW m–1 K–2 and a figure of merit of 0.29 could be obtained at 580 K along the transverse direction for the sample with the characteristic microstructural length scale of 2.41 μm. This has an implication in engineering a thermoelectric device in terms of engineering power factor and output power density. For a ΔT of 250 K, we report a difference of 0.4 W cm–2 in output power density between the transverse and the longitudinal directions that have an identical microstructural length scale of 2.41 μm.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.1c02664</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6069-7968</orcidid><orcidid>https://orcid.org/0000-0002-1941-5551</orcidid><orcidid>https://orcid.org/0000-0001-9415-2141</orcidid><orcidid>https://orcid.org/0000-0002-7733-1612</orcidid><orcidid>https://orcid.org/0000-0002-8056-5006</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0962 |
ispartof | ACS applied energy materials, 2021-10, Vol.4 (10), p.11867-11877 |
issn | 2574-0962 2574-0962 |
language | eng ; jpn |
recordid | cdi_acs_journals_10_1021_acsaem_1c02664 |
source | American Chemical Society Journals |
title | Anisotropy of Microstructure and Its Influence on Thermoelectricity: The Case of Cu2Te–Sb2Te3 Eutectic |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A23%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropy%20of%20Microstructure%20and%20Its%20Influence%20on%20Thermoelectricity:%20The%20Case%20of%20Cu2Te%E2%80%93Sb2Te3%20Eutectic&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Mukherjee,%20Shriparna&rft.date=2021-10-25&rft.volume=4&rft.issue=10&rft.spage=11867&rft.epage=11877&rft.pages=11867-11877&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.1c02664&rft_dat=%3Cacs%3Ed6311009%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |