Oxygen Reduction Reaction Promoted by the Strong Coupling of MoS2 and SnS

Graphene-like molybdenum disulfide (MoS2) with unique catalytic features and chemical/electrochemical stability holds great potential as an oxygen reduction reaction (ORR) catalyst, but the overall weak oxygen adsorption and low electron conductivity limit its catalytic activity. Herein, MoS2 strong...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2021-09, Vol.4 (9), p.9498-9506
Hauptverfasser: He, Caimei, Cui, Lisan, Wu, Xiangsi, Cai, Yezheng, Ma, Zhaoling, Zhong, Xinxian, Wang, Hongqiang, Li, Qingyu, Huang, Youguo, Pan, Qichang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9506
container_issue 9
container_start_page 9498
container_title ACS applied energy materials
container_volume 4
creator He, Caimei
Cui, Lisan
Wu, Xiangsi
Cai, Yezheng
Ma, Zhaoling
Zhong, Xinxian
Wang, Hongqiang
Li, Qingyu
Huang, Youguo
Pan, Qichang
description Graphene-like molybdenum disulfide (MoS2) with unique catalytic features and chemical/electrochemical stability holds great potential as an oxygen reduction reaction (ORR) catalyst, but the overall weak oxygen adsorption and low electron conductivity limit its catalytic activity. Herein, MoS2 strongly coupled with an oxophilic SnS heterostructure embedded in nitrogen-doped porous carbon sheets (MoS2-SnS/NPC) was developed. The coupled SnS can not only tune the electronic structure but also promote the oxygen molecule adsorption and activation. Moreover, NPC can enhance the electron transfer as well as the structural stability of the MoS2-SnS heterostructure without agglomeration. As expected, MoS2-SnS/NPC exhibited enhanced catalytic activity that is superior to those of MoS2/NPC and SnS/NPC along with good catalytic stability for ORR. As a cathode catalyst, a homemade zinc–air battery driven by MoS2-SnS/NPC showed considerable discharging performance superior to the one driven by a commercial Pt/C catalyst in terms of open-circuit voltage, peak power density, and specific capacity. Furthermore, a MoS2-SnS/NPC-based zinc–air battery displayed a stable charging and discharging voltage gap for 48 h without an expanding trend, suggesting a robust cycling performance and heralding promising application prospects. The rotating ring-disk electrode and in situ electrochemical Raman tests revealed that the ORR underwent a combined 2-electron and 4-electron associative mechanism on MoS2-SnS/NPC, and the improved catalytic activity came from the synergistic effect of MoS2, SnS, S vacancy, and porous carbon sheets. This study provided a heterojunction strategy by coupling oxophilic SnS for boosting ORR electrocatalysis, which can be extended to other cheap transition-metal catalysts for efficient energy conversion.
doi_str_mv 10.1021/acsaem.1c01677
format Article
fullrecord <record><control><sourceid>acs_webof</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsaem_1c01677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d215927673</sourcerecordid><originalsourceid>FETCH-LOGICAL-a120t-9ef0dcfd94d03de2761d605867484a3a20c7ef201ca77a05e3ee372a8f08ba23</originalsourceid><addsrcrecordid>eNqNkL9PwzAQhS0EEhV0ZfYMSjnbaZyMKOJHpaIi0t262peSqrWrJBX0v8dVOjAy3Te8d9L7GLsTMBEgxSPaDmk3ERZEpvUFG8mpThMoMnn5h6_ZuOs2ACAKkcmiGLHZ4ue4Js8_yR1s34QT4QAfbdiFnhxfHXn_Rbzq2-DXvAyH_baJEGr-HirJ0Tte-eqWXdW47Wh8vjds-fK8LN-S-eJ1Vj7NExQS-qSgGpytXZE6UI6kzoTLYJpnOs1TVCjBaqolCItaI0xJESktMa8hX6FUN-xhePtNq1B3tiFvyezbZoft0cRpGpRSeRYpT2M6_3-6bHo8LY8LfR-r90M1qjWbcGh9XGUEmJNvM_g2Z9_qF8ktcVs</addsrcrecordid><sourcetype>Enrichment Source</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oxygen Reduction Reaction Promoted by the Strong Coupling of MoS2 and SnS</title><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>American Chemical Society Journals</source><creator>He, Caimei ; Cui, Lisan ; Wu, Xiangsi ; Cai, Yezheng ; Ma, Zhaoling ; Zhong, Xinxian ; Wang, Hongqiang ; Li, Qingyu ; Huang, Youguo ; Pan, Qichang</creator><creatorcontrib>He, Caimei ; Cui, Lisan ; Wu, Xiangsi ; Cai, Yezheng ; Ma, Zhaoling ; Zhong, Xinxian ; Wang, Hongqiang ; Li, Qingyu ; Huang, Youguo ; Pan, Qichang</creatorcontrib><description>Graphene-like molybdenum disulfide (MoS2) with unique catalytic features and chemical/electrochemical stability holds great potential as an oxygen reduction reaction (ORR) catalyst, but the overall weak oxygen adsorption and low electron conductivity limit its catalytic activity. Herein, MoS2 strongly coupled with an oxophilic SnS heterostructure embedded in nitrogen-doped porous carbon sheets (MoS2-SnS/NPC) was developed. The coupled SnS can not only tune the electronic structure but also promote the oxygen molecule adsorption and activation. Moreover, NPC can enhance the electron transfer as well as the structural stability of the MoS2-SnS heterostructure without agglomeration. As expected, MoS2-SnS/NPC exhibited enhanced catalytic activity that is superior to those of MoS2/NPC and SnS/NPC along with good catalytic stability for ORR. As a cathode catalyst, a homemade zinc–air battery driven by MoS2-SnS/NPC showed considerable discharging performance superior to the one driven by a commercial Pt/C catalyst in terms of open-circuit voltage, peak power density, and specific capacity. Furthermore, a MoS2-SnS/NPC-based zinc–air battery displayed a stable charging and discharging voltage gap for 48 h without an expanding trend, suggesting a robust cycling performance and heralding promising application prospects. The rotating ring-disk electrode and in situ electrochemical Raman tests revealed that the ORR underwent a combined 2-electron and 4-electron associative mechanism on MoS2-SnS/NPC, and the improved catalytic activity came from the synergistic effect of MoS2, SnS, S vacancy, and porous carbon sheets. This study provided a heterojunction strategy by coupling oxophilic SnS for boosting ORR electrocatalysis, which can be extended to other cheap transition-metal catalysts for efficient energy conversion.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.1c01677</identifier><language>eng</language><publisher>WASHINGTON: American Chemical Society</publisher><subject>Chemistry ; Chemistry, Physical ; Energy &amp; Fuels ; Materials Science ; Materials Science, Multidisciplinary ; Physical Sciences ; Science &amp; Technology ; Technology</subject><ispartof>ACS applied energy materials, 2021-09, Vol.4 (9), p.9498-9506</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000703338600084</woscitedreferencesoriginalsourcerecordid><cites>FETCH-LOGICAL-a120t-9ef0dcfd94d03de2761d605867484a3a20c7ef201ca77a05e3ee372a8f08ba23</cites><orcidid>0000-0003-4638-4401 ; 0000-0002-9597-2851 ; 0000-0003-0418-0240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.1c01677$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.1c01677$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,27081,27929,27930,39263,56743,56793</link.rule.ids></links><search><creatorcontrib>He, Caimei</creatorcontrib><creatorcontrib>Cui, Lisan</creatorcontrib><creatorcontrib>Wu, Xiangsi</creatorcontrib><creatorcontrib>Cai, Yezheng</creatorcontrib><creatorcontrib>Ma, Zhaoling</creatorcontrib><creatorcontrib>Zhong, Xinxian</creatorcontrib><creatorcontrib>Wang, Hongqiang</creatorcontrib><creatorcontrib>Li, Qingyu</creatorcontrib><creatorcontrib>Huang, Youguo</creatorcontrib><creatorcontrib>Pan, Qichang</creatorcontrib><title>Oxygen Reduction Reaction Promoted by the Strong Coupling of MoS2 and SnS</title><title>ACS applied energy materials</title><addtitle>ACS APPL ENERG MATER</addtitle><addtitle>ACS Appl. Energy Mater</addtitle><description>Graphene-like molybdenum disulfide (MoS2) with unique catalytic features and chemical/electrochemical stability holds great potential as an oxygen reduction reaction (ORR) catalyst, but the overall weak oxygen adsorption and low electron conductivity limit its catalytic activity. Herein, MoS2 strongly coupled with an oxophilic SnS heterostructure embedded in nitrogen-doped porous carbon sheets (MoS2-SnS/NPC) was developed. The coupled SnS can not only tune the electronic structure but also promote the oxygen molecule adsorption and activation. Moreover, NPC can enhance the electron transfer as well as the structural stability of the MoS2-SnS heterostructure without agglomeration. As expected, MoS2-SnS/NPC exhibited enhanced catalytic activity that is superior to those of MoS2/NPC and SnS/NPC along with good catalytic stability for ORR. As a cathode catalyst, a homemade zinc–air battery driven by MoS2-SnS/NPC showed considerable discharging performance superior to the one driven by a commercial Pt/C catalyst in terms of open-circuit voltage, peak power density, and specific capacity. Furthermore, a MoS2-SnS/NPC-based zinc–air battery displayed a stable charging and discharging voltage gap for 48 h without an expanding trend, suggesting a robust cycling performance and heralding promising application prospects. The rotating ring-disk electrode and in situ electrochemical Raman tests revealed that the ORR underwent a combined 2-electron and 4-electron associative mechanism on MoS2-SnS/NPC, and the improved catalytic activity came from the synergistic effect of MoS2, SnS, S vacancy, and porous carbon sheets. This study provided a heterojunction strategy by coupling oxophilic SnS for boosting ORR electrocatalysis, which can be extended to other cheap transition-metal catalysts for efficient energy conversion.</description><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Energy &amp; Fuels</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Physical Sciences</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkL9PwzAQhS0EEhV0ZfYMSjnbaZyMKOJHpaIi0t262peSqrWrJBX0v8dVOjAy3Te8d9L7GLsTMBEgxSPaDmk3ERZEpvUFG8mpThMoMnn5h6_ZuOs2ACAKkcmiGLHZ4ue4Js8_yR1s34QT4QAfbdiFnhxfHXn_Rbzq2-DXvAyH_baJEGr-HirJ0Tte-eqWXdW47Wh8vjds-fK8LN-S-eJ1Vj7NExQS-qSgGpytXZE6UI6kzoTLYJpnOs1TVCjBaqolCItaI0xJESktMa8hX6FUN-xhePtNq1B3tiFvyezbZoft0cRpGpRSeRYpT2M6_3-6bHo8LY8LfR-r90M1qjWbcGh9XGUEmJNvM_g2Z9_qF8ktcVs</recordid><startdate>20210927</startdate><enddate>20210927</enddate><creator>He, Caimei</creator><creator>Cui, Lisan</creator><creator>Wu, Xiangsi</creator><creator>Cai, Yezheng</creator><creator>Ma, Zhaoling</creator><creator>Zhong, Xinxian</creator><creator>Wang, Hongqiang</creator><creator>Li, Qingyu</creator><creator>Huang, Youguo</creator><creator>Pan, Qichang</creator><general>American Chemical Society</general><general>Amer Chemical Soc</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><orcidid>https://orcid.org/0000-0003-4638-4401</orcidid><orcidid>https://orcid.org/0000-0002-9597-2851</orcidid><orcidid>https://orcid.org/0000-0003-0418-0240</orcidid></search><sort><creationdate>20210927</creationdate><title>Oxygen Reduction Reaction Promoted by the Strong Coupling of MoS2 and SnS</title><author>He, Caimei ; Cui, Lisan ; Wu, Xiangsi ; Cai, Yezheng ; Ma, Zhaoling ; Zhong, Xinxian ; Wang, Hongqiang ; Li, Qingyu ; Huang, Youguo ; Pan, Qichang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a120t-9ef0dcfd94d03de2761d605867484a3a20c7ef201ca77a05e3ee372a8f08ba23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Energy &amp; Fuels</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Physical Sciences</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Caimei</creatorcontrib><creatorcontrib>Cui, Lisan</creatorcontrib><creatorcontrib>Wu, Xiangsi</creatorcontrib><creatorcontrib>Cai, Yezheng</creatorcontrib><creatorcontrib>Ma, Zhaoling</creatorcontrib><creatorcontrib>Zhong, Xinxian</creatorcontrib><creatorcontrib>Wang, Hongqiang</creatorcontrib><creatorcontrib>Li, Qingyu</creatorcontrib><creatorcontrib>Huang, Youguo</creatorcontrib><creatorcontrib>Pan, Qichang</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Caimei</au><au>Cui, Lisan</au><au>Wu, Xiangsi</au><au>Cai, Yezheng</au><au>Ma, Zhaoling</au><au>Zhong, Xinxian</au><au>Wang, Hongqiang</au><au>Li, Qingyu</au><au>Huang, Youguo</au><au>Pan, Qichang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Reduction Reaction Promoted by the Strong Coupling of MoS2 and SnS</atitle><jtitle>ACS applied energy materials</jtitle><stitle>ACS APPL ENERG MATER</stitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2021-09-27</date><risdate>2021</risdate><volume>4</volume><issue>9</issue><spage>9498</spage><epage>9506</epage><pages>9498-9506</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Graphene-like molybdenum disulfide (MoS2) with unique catalytic features and chemical/electrochemical stability holds great potential as an oxygen reduction reaction (ORR) catalyst, but the overall weak oxygen adsorption and low electron conductivity limit its catalytic activity. Herein, MoS2 strongly coupled with an oxophilic SnS heterostructure embedded in nitrogen-doped porous carbon sheets (MoS2-SnS/NPC) was developed. The coupled SnS can not only tune the electronic structure but also promote the oxygen molecule adsorption and activation. Moreover, NPC can enhance the electron transfer as well as the structural stability of the MoS2-SnS heterostructure without agglomeration. As expected, MoS2-SnS/NPC exhibited enhanced catalytic activity that is superior to those of MoS2/NPC and SnS/NPC along with good catalytic stability for ORR. As a cathode catalyst, a homemade zinc–air battery driven by MoS2-SnS/NPC showed considerable discharging performance superior to the one driven by a commercial Pt/C catalyst in terms of open-circuit voltage, peak power density, and specific capacity. Furthermore, a MoS2-SnS/NPC-based zinc–air battery displayed a stable charging and discharging voltage gap for 48 h without an expanding trend, suggesting a robust cycling performance and heralding promising application prospects. The rotating ring-disk electrode and in situ electrochemical Raman tests revealed that the ORR underwent a combined 2-electron and 4-electron associative mechanism on MoS2-SnS/NPC, and the improved catalytic activity came from the synergistic effect of MoS2, SnS, S vacancy, and porous carbon sheets. This study provided a heterojunction strategy by coupling oxophilic SnS for boosting ORR electrocatalysis, which can be extended to other cheap transition-metal catalysts for efficient energy conversion.</abstract><cop>WASHINGTON</cop><pub>American Chemical Society</pub><doi>10.1021/acsaem.1c01677</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4638-4401</orcidid><orcidid>https://orcid.org/0000-0002-9597-2851</orcidid><orcidid>https://orcid.org/0000-0003-0418-0240</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2021-09, Vol.4 (9), p.9498-9506
issn 2574-0962
2574-0962
language eng
recordid cdi_acs_journals_10_1021_acsaem_1c01677
source Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; American Chemical Society Journals
subjects Chemistry
Chemistry, Physical
Energy & Fuels
Materials Science
Materials Science, Multidisciplinary
Physical Sciences
Science & Technology
Technology
title Oxygen Reduction Reaction Promoted by the Strong Coupling of MoS2 and SnS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T10%3A19%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Reduction%20Reaction%20Promoted%20by%20the%20Strong%20Coupling%20of%20MoS2%20and%20SnS&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=He,%20Caimei&rft.date=2021-09-27&rft.volume=4&rft.issue=9&rft.spage=9498&rft.epage=9506&rft.pages=9498-9506&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.1c01677&rft_dat=%3Cacs_webof%3Ed215927673%3C/acs_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true