Enhanced Oxygen Evolution Activity of CoO–La0.7Sr0.3MnO3−δ Heterostructured Thin Film

The design and fabrication of highly efficient oxygen evolution reaction (OER) electrocatalysts is crucial for further development of electrochemical conversion devices. In this paper, the pulsed laser deposition technique was first used to fabricate high quality and well-defined CoO–La0.7Sr0.3MnO3−...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2020-08, Vol.3 (8), p.7988-7996
Hauptverfasser: Xie, Renjie, Hu, Xiangchen, Shi, Yanuo, Nie, Zhiwei, Zhang, Nian, Traversa, Enrico, Yu, Yi, Yang, Nan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7996
container_issue 8
container_start_page 7988
container_title ACS applied energy materials
container_volume 3
creator Xie, Renjie
Hu, Xiangchen
Shi, Yanuo
Nie, Zhiwei
Zhang, Nian
Traversa, Enrico
Yu, Yi
Yang, Nan
description The design and fabrication of highly efficient oxygen evolution reaction (OER) electrocatalysts is crucial for further development of electrochemical conversion devices. In this paper, the pulsed laser deposition technique was first used to fabricate high quality and well-defined CoO–La0.7Sr0.3MnO3−δ (LSMO) heterostructured electrocatalysts. The current density was about 70 and 20 times larger with respect to single-phase CoO and LSMO thin film electrocatalysts, respectively. The enhancement of electrocatalytic activity was investigated in detail by using electrochemical and X-ray photoemission/absorption spectroscopies. The introduction of the LSMO intermediate layer not only promoted charge transfer kinetics but also resulted in a larger Co3+/Co2+ ratio due to the partial oxidation of the CoO layer during film growth. The design of coatings with a tunable oxygen electrocatalytic activity implementing the heterostructure engineering approach was demonstrated.
doi_str_mv 10.1021/acsaem.0c01335
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acsaem_0c01335</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b520487007</sourcerecordid><originalsourceid>FETCH-LOGICAL-a190t-6cade3eef26e32d43c36810609f7a6d5525fe6a1107014324d1b212f77aed21f3</originalsourceid><addsrcrecordid>eNpN0DFOwzAYBWALgURVujJ7Rkr4fztx8FhFLa0UlIGysETGsWmq1JESp6IbIzNchXNwiJ6EoHZgem96T_oIuUYIERjeKt0psw1BA3Ien5ERi5MoACnY-b9-SSZdtwEAlCiYlCPyPHNr5bQpaf62fzWOznZN3fuqcXSqfbWr_J42lqZNfnj_yhSEyWMLIX9wOT98fP5804Xxpm063_ba9-2ws1pXjs6rentFLqyqOzM55Zg8zWerdBFk-f0ynWaBQgk-EFqVhhtjmTCclRHXXNwhCJA2UaKMYxZbIxQiJIARZ1GJLwyZTRJlSoaWj8nNcXcwKDZN37rhrUAo_mCKI0xxguG_CPRY3A</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhanced Oxygen Evolution Activity of CoO–La0.7Sr0.3MnO3−δ Heterostructured Thin Film</title><source>ACS Publications</source><creator>Xie, Renjie ; Hu, Xiangchen ; Shi, Yanuo ; Nie, Zhiwei ; Zhang, Nian ; Traversa, Enrico ; Yu, Yi ; Yang, Nan</creator><creatorcontrib>Xie, Renjie ; Hu, Xiangchen ; Shi, Yanuo ; Nie, Zhiwei ; Zhang, Nian ; Traversa, Enrico ; Yu, Yi ; Yang, Nan</creatorcontrib><description>The design and fabrication of highly efficient oxygen evolution reaction (OER) electrocatalysts is crucial for further development of electrochemical conversion devices. In this paper, the pulsed laser deposition technique was first used to fabricate high quality and well-defined CoO–La0.7Sr0.3MnO3−δ (LSMO) heterostructured electrocatalysts. The current density was about 70 and 20 times larger with respect to single-phase CoO and LSMO thin film electrocatalysts, respectively. The enhancement of electrocatalytic activity was investigated in detail by using electrochemical and X-ray photoemission/absorption spectroscopies. The introduction of the LSMO intermediate layer not only promoted charge transfer kinetics but also resulted in a larger Co3+/Co2+ ratio due to the partial oxidation of the CoO layer during film growth. The design of coatings with a tunable oxygen electrocatalytic activity implementing the heterostructure engineering approach was demonstrated.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.0c01335</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied energy materials, 2020-08, Vol.3 (8), p.7988-7996</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0699-3114 ; 0000-0003-4326-5992 ; 0000-0001-6336-941X ; 0000-0001-7374-3110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.0c01335$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.0c01335$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Xie, Renjie</creatorcontrib><creatorcontrib>Hu, Xiangchen</creatorcontrib><creatorcontrib>Shi, Yanuo</creatorcontrib><creatorcontrib>Nie, Zhiwei</creatorcontrib><creatorcontrib>Zhang, Nian</creatorcontrib><creatorcontrib>Traversa, Enrico</creatorcontrib><creatorcontrib>Yu, Yi</creatorcontrib><creatorcontrib>Yang, Nan</creatorcontrib><title>Enhanced Oxygen Evolution Activity of CoO–La0.7Sr0.3MnO3−δ Heterostructured Thin Film</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>The design and fabrication of highly efficient oxygen evolution reaction (OER) electrocatalysts is crucial for further development of electrochemical conversion devices. In this paper, the pulsed laser deposition technique was first used to fabricate high quality and well-defined CoO–La0.7Sr0.3MnO3−δ (LSMO) heterostructured electrocatalysts. The current density was about 70 and 20 times larger with respect to single-phase CoO and LSMO thin film electrocatalysts, respectively. The enhancement of electrocatalytic activity was investigated in detail by using electrochemical and X-ray photoemission/absorption spectroscopies. The introduction of the LSMO intermediate layer not only promoted charge transfer kinetics but also resulted in a larger Co3+/Co2+ ratio due to the partial oxidation of the CoO layer during film growth. The design of coatings with a tunable oxygen electrocatalytic activity implementing the heterostructure engineering approach was demonstrated.</description><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpN0DFOwzAYBWALgURVujJ7Rkr4fztx8FhFLa0UlIGysETGsWmq1JESp6IbIzNchXNwiJ6EoHZgem96T_oIuUYIERjeKt0psw1BA3Ien5ERi5MoACnY-b9-SSZdtwEAlCiYlCPyPHNr5bQpaf62fzWOznZN3fuqcXSqfbWr_J42lqZNfnj_yhSEyWMLIX9wOT98fP5804Xxpm063_ba9-2ws1pXjs6rentFLqyqOzM55Zg8zWerdBFk-f0ynWaBQgk-EFqVhhtjmTCclRHXXNwhCJA2UaKMYxZbIxQiJIARZ1GJLwyZTRJlSoaWj8nNcXcwKDZN37rhrUAo_mCKI0xxguG_CPRY3A</recordid><startdate>20200824</startdate><enddate>20200824</enddate><creator>Xie, Renjie</creator><creator>Hu, Xiangchen</creator><creator>Shi, Yanuo</creator><creator>Nie, Zhiwei</creator><creator>Zhang, Nian</creator><creator>Traversa, Enrico</creator><creator>Yu, Yi</creator><creator>Yang, Nan</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-0699-3114</orcidid><orcidid>https://orcid.org/0000-0003-4326-5992</orcidid><orcidid>https://orcid.org/0000-0001-6336-941X</orcidid><orcidid>https://orcid.org/0000-0001-7374-3110</orcidid></search><sort><creationdate>20200824</creationdate><title>Enhanced Oxygen Evolution Activity of CoO–La0.7Sr0.3MnO3−δ Heterostructured Thin Film</title><author>Xie, Renjie ; Hu, Xiangchen ; Shi, Yanuo ; Nie, Zhiwei ; Zhang, Nian ; Traversa, Enrico ; Yu, Yi ; Yang, Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a190t-6cade3eef26e32d43c36810609f7a6d5525fe6a1107014324d1b212f77aed21f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Renjie</creatorcontrib><creatorcontrib>Hu, Xiangchen</creatorcontrib><creatorcontrib>Shi, Yanuo</creatorcontrib><creatorcontrib>Nie, Zhiwei</creatorcontrib><creatorcontrib>Zhang, Nian</creatorcontrib><creatorcontrib>Traversa, Enrico</creatorcontrib><creatorcontrib>Yu, Yi</creatorcontrib><creatorcontrib>Yang, Nan</creatorcontrib><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Renjie</au><au>Hu, Xiangchen</au><au>Shi, Yanuo</au><au>Nie, Zhiwei</au><au>Zhang, Nian</au><au>Traversa, Enrico</au><au>Yu, Yi</au><au>Yang, Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Oxygen Evolution Activity of CoO–La0.7Sr0.3MnO3−δ Heterostructured Thin Film</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2020-08-24</date><risdate>2020</risdate><volume>3</volume><issue>8</issue><spage>7988</spage><epage>7996</epage><pages>7988-7996</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>The design and fabrication of highly efficient oxygen evolution reaction (OER) electrocatalysts is crucial for further development of electrochemical conversion devices. In this paper, the pulsed laser deposition technique was first used to fabricate high quality and well-defined CoO–La0.7Sr0.3MnO3−δ (LSMO) heterostructured electrocatalysts. The current density was about 70 and 20 times larger with respect to single-phase CoO and LSMO thin film electrocatalysts, respectively. The enhancement of electrocatalytic activity was investigated in detail by using electrochemical and X-ray photoemission/absorption spectroscopies. The introduction of the LSMO intermediate layer not only promoted charge transfer kinetics but also resulted in a larger Co3+/Co2+ ratio due to the partial oxidation of the CoO layer during film growth. The design of coatings with a tunable oxygen electrocatalytic activity implementing the heterostructure engineering approach was demonstrated.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsaem.0c01335</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0699-3114</orcidid><orcidid>https://orcid.org/0000-0003-4326-5992</orcidid><orcidid>https://orcid.org/0000-0001-6336-941X</orcidid><orcidid>https://orcid.org/0000-0001-7374-3110</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2020-08, Vol.3 (8), p.7988-7996
issn 2574-0962
2574-0962
language eng
recordid cdi_acs_journals_10_1021_acsaem_0c01335
source ACS Publications
title Enhanced Oxygen Evolution Activity of CoO–La0.7Sr0.3MnO3−δ Heterostructured Thin Film
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A20%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Oxygen%20Evolution%20Activity%20of%20CoO%E2%80%93La0.7Sr0.3MnO3%E2%88%92%CE%B4%20Heterostructured%20Thin%20Film&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Xie,%20Renjie&rft.date=2020-08-24&rft.volume=3&rft.issue=8&rft.spage=7988&rft.epage=7996&rft.pages=7988-7996&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.0c01335&rft_dat=%3Cacs%3Eb520487007%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true