MoS2 Monolayers on Au Nanodot Arrays: Surface Plasmon, Local Strain, and Interfacial Electronic Interaction
Metal and transition-metal dichalcogenide (TMD) hybrid systems have been attracting growing research attention because exciton–plasmon coupling is a desirable means of tuning the physical properties of TMD materials. Competing effects of metal nanostructures, such as the local electromagnetic field...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2020-04, Vol.11 (8), p.3039-3044 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3044 |
---|---|
container_issue | 8 |
container_start_page | 3039 |
container_title | The journal of physical chemistry letters |
container_volume | 11 |
creator | Kim, Eunah Lee, Chanwoo Song, Jungeun Kwon, Soyeong Kim, Bora Kim, Dae Hyun Park, Tae Joo Jeong, Mun Seok Kim, Dong-Wook |
description | Metal and transition-metal dichalcogenide (TMD) hybrid systems have been attracting growing research attention because exciton–plasmon coupling is a desirable means of tuning the physical properties of TMD materials. Competing effects of metal nanostructures, such as the local electromagnetic field enhancement and luminescence quenching, affect the photoluminescence (PL) characteristics of metal/TMD nanostructures. In this study, we prepared TMD MoS2 monolayers on hexagonal arrays of Au nanodots and investigated their physical properties by micro-PL and surface photovoltage (SPV) measurements. MoS2 monolayers on bare Au nanodots exhibited higher PL intensities than those of MoS2 monolayers on 5-nm-thick Al2O3-coated Au nanodots. The Al2O3 spacer layer blocked charge transfer at the Au/MoS2 interface but allowed the transfer of mechanical strain to the MoS2 monolayers on the nanodots. The SPV mapping results revealed not only the electron-transfer behavior at the Au/MoS2 contacts but also the lateral drift of charge carriers at the MoS2 surface under light illumination, which corresponds to nonradiative relaxation processes of the photogenerated excitons. |
doi_str_mv | 10.1021/acs.jpclett.0c00691 |
format | Article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpclett_0c00691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c052547842</sourcerecordid><originalsourceid>FETCH-LOGICAL-a228t-c1a69cd6e32472cc6e7566132c74a9e7de25b3b511cb3dcd37fabce61b45b57d3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqXwBWz8AaT1I7ETdlVVoFILSIF1NBm7Ukqwke0u-vcktAtWc-foakY6hNxzNuNM8DlgnO1_sLcpzRgypip-QSa8ystM87K4_JevyU2M-7HCSj0hX1tfC7r1zvdwtCFS7-jiQF_BeeMTXYQAx_hI60PYAVr63kP89u6BbjxCT-sUoBs2cIauXbJjqRv4qreYgncdnjBg6ry7JVc76KO9O88p-XxafSxfss3b83q52GQgRJky5KAqNMpKkWuBqKwulOJSoM6hstpYUbSyLTjHVho0Uu-gRat4mxdtoY2ckvnp7qCl2ftDcMO3hrNmdNX8wZOr5uxK_gIT5GGC</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MoS2 Monolayers on Au Nanodot Arrays: Surface Plasmon, Local Strain, and Interfacial Electronic Interaction</title><source>American Chemical Society Journals</source><creator>Kim, Eunah ; Lee, Chanwoo ; Song, Jungeun ; Kwon, Soyeong ; Kim, Bora ; Kim, Dae Hyun ; Park, Tae Joo ; Jeong, Mun Seok ; Kim, Dong-Wook</creator><creatorcontrib>Kim, Eunah ; Lee, Chanwoo ; Song, Jungeun ; Kwon, Soyeong ; Kim, Bora ; Kim, Dae Hyun ; Park, Tae Joo ; Jeong, Mun Seok ; Kim, Dong-Wook</creatorcontrib><description>Metal and transition-metal dichalcogenide (TMD) hybrid systems have been attracting growing research attention because exciton–plasmon coupling is a desirable means of tuning the physical properties of TMD materials. Competing effects of metal nanostructures, such as the local electromagnetic field enhancement and luminescence quenching, affect the photoluminescence (PL) characteristics of metal/TMD nanostructures. In this study, we prepared TMD MoS2 monolayers on hexagonal arrays of Au nanodots and investigated their physical properties by micro-PL and surface photovoltage (SPV) measurements. MoS2 monolayers on bare Au nanodots exhibited higher PL intensities than those of MoS2 monolayers on 5-nm-thick Al2O3-coated Au nanodots. The Al2O3 spacer layer blocked charge transfer at the Au/MoS2 interface but allowed the transfer of mechanical strain to the MoS2 monolayers on the nanodots. The SPV mapping results revealed not only the electron-transfer behavior at the Au/MoS2 contacts but also the lateral drift of charge carriers at the MoS2 surface under light illumination, which corresponds to nonradiative relaxation processes of the photogenerated excitons.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.0c00691</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2020-04, Vol.11 (8), p.3039-3044</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4641-2425 ; 0000-0001-7630-2927 ; 0000-0002-7019-8089 ; 0000-0002-5687-7739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.0c00691$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.0c00691$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Kim, Eunah</creatorcontrib><creatorcontrib>Lee, Chanwoo</creatorcontrib><creatorcontrib>Song, Jungeun</creatorcontrib><creatorcontrib>Kwon, Soyeong</creatorcontrib><creatorcontrib>Kim, Bora</creatorcontrib><creatorcontrib>Kim, Dae Hyun</creatorcontrib><creatorcontrib>Park, Tae Joo</creatorcontrib><creatorcontrib>Jeong, Mun Seok</creatorcontrib><creatorcontrib>Kim, Dong-Wook</creatorcontrib><title>MoS2 Monolayers on Au Nanodot Arrays: Surface Plasmon, Local Strain, and Interfacial Electronic Interaction</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Metal and transition-metal dichalcogenide (TMD) hybrid systems have been attracting growing research attention because exciton–plasmon coupling is a desirable means of tuning the physical properties of TMD materials. Competing effects of metal nanostructures, such as the local electromagnetic field enhancement and luminescence quenching, affect the photoluminescence (PL) characteristics of metal/TMD nanostructures. In this study, we prepared TMD MoS2 monolayers on hexagonal arrays of Au nanodots and investigated their physical properties by micro-PL and surface photovoltage (SPV) measurements. MoS2 monolayers on bare Au nanodots exhibited higher PL intensities than those of MoS2 monolayers on 5-nm-thick Al2O3-coated Au nanodots. The Al2O3 spacer layer blocked charge transfer at the Au/MoS2 interface but allowed the transfer of mechanical strain to the MoS2 monolayers on the nanodots. The SPV mapping results revealed not only the electron-transfer behavior at the Au/MoS2 contacts but also the lateral drift of charge carriers at the MoS2 surface under light illumination, which corresponds to nonradiative relaxation processes of the photogenerated excitons.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpNkMtOwzAQRS0EEqXwBWz8AaT1I7ETdlVVoFILSIF1NBm7Ukqwke0u-vcktAtWc-foakY6hNxzNuNM8DlgnO1_sLcpzRgypip-QSa8ystM87K4_JevyU2M-7HCSj0hX1tfC7r1zvdwtCFS7-jiQF_BeeMTXYQAx_hI60PYAVr63kP89u6BbjxCT-sUoBs2cIauXbJjqRv4qreYgncdnjBg6ry7JVc76KO9O88p-XxafSxfss3b83q52GQgRJky5KAqNMpKkWuBqKwulOJSoM6hstpYUbSyLTjHVho0Uu-gRat4mxdtoY2ckvnp7qCl2ftDcMO3hrNmdNX8wZOr5uxK_gIT5GGC</recordid><startdate>20200416</startdate><enddate>20200416</enddate><creator>Kim, Eunah</creator><creator>Lee, Chanwoo</creator><creator>Song, Jungeun</creator><creator>Kwon, Soyeong</creator><creator>Kim, Bora</creator><creator>Kim, Dae Hyun</creator><creator>Park, Tae Joo</creator><creator>Jeong, Mun Seok</creator><creator>Kim, Dong-Wook</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-4641-2425</orcidid><orcidid>https://orcid.org/0000-0001-7630-2927</orcidid><orcidid>https://orcid.org/0000-0002-7019-8089</orcidid><orcidid>https://orcid.org/0000-0002-5687-7739</orcidid></search><sort><creationdate>20200416</creationdate><title>MoS2 Monolayers on Au Nanodot Arrays: Surface Plasmon, Local Strain, and Interfacial Electronic Interaction</title><author>Kim, Eunah ; Lee, Chanwoo ; Song, Jungeun ; Kwon, Soyeong ; Kim, Bora ; Kim, Dae Hyun ; Park, Tae Joo ; Jeong, Mun Seok ; Kim, Dong-Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a228t-c1a69cd6e32472cc6e7566132c74a9e7de25b3b511cb3dcd37fabce61b45b57d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Eunah</creatorcontrib><creatorcontrib>Lee, Chanwoo</creatorcontrib><creatorcontrib>Song, Jungeun</creatorcontrib><creatorcontrib>Kwon, Soyeong</creatorcontrib><creatorcontrib>Kim, Bora</creatorcontrib><creatorcontrib>Kim, Dae Hyun</creatorcontrib><creatorcontrib>Park, Tae Joo</creatorcontrib><creatorcontrib>Jeong, Mun Seok</creatorcontrib><creatorcontrib>Kim, Dong-Wook</creatorcontrib><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Eunah</au><au>Lee, Chanwoo</au><au>Song, Jungeun</au><au>Kwon, Soyeong</au><au>Kim, Bora</au><au>Kim, Dae Hyun</au><au>Park, Tae Joo</au><au>Jeong, Mun Seok</au><au>Kim, Dong-Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MoS2 Monolayers on Au Nanodot Arrays: Surface Plasmon, Local Strain, and Interfacial Electronic Interaction</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2020-04-16</date><risdate>2020</risdate><volume>11</volume><issue>8</issue><spage>3039</spage><epage>3044</epage><pages>3039-3044</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Metal and transition-metal dichalcogenide (TMD) hybrid systems have been attracting growing research attention because exciton–plasmon coupling is a desirable means of tuning the physical properties of TMD materials. Competing effects of metal nanostructures, such as the local electromagnetic field enhancement and luminescence quenching, affect the photoluminescence (PL) characteristics of metal/TMD nanostructures. In this study, we prepared TMD MoS2 monolayers on hexagonal arrays of Au nanodots and investigated their physical properties by micro-PL and surface photovoltage (SPV) measurements. MoS2 monolayers on bare Au nanodots exhibited higher PL intensities than those of MoS2 monolayers on 5-nm-thick Al2O3-coated Au nanodots. The Al2O3 spacer layer blocked charge transfer at the Au/MoS2 interface but allowed the transfer of mechanical strain to the MoS2 monolayers on the nanodots. The SPV mapping results revealed not only the electron-transfer behavior at the Au/MoS2 contacts but also the lateral drift of charge carriers at the MoS2 surface under light illumination, which corresponds to nonradiative relaxation processes of the photogenerated excitons.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.0c00691</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-4641-2425</orcidid><orcidid>https://orcid.org/0000-0001-7630-2927</orcidid><orcidid>https://orcid.org/0000-0002-7019-8089</orcidid><orcidid>https://orcid.org/0000-0002-5687-7739</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2020-04, Vol.11 (8), p.3039-3044 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_acs_journals_10_1021_acs_jpclett_0c00691 |
source | American Chemical Society Journals |
title | MoS2 Monolayers on Au Nanodot Arrays: Surface Plasmon, Local Strain, and Interfacial Electronic Interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A15%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MoS2%20Monolayers%20on%20Au%20Nanodot%20Arrays:%20Surface%20Plasmon,%20Local%20Strain,%20and%20Interfacial%20Electronic%20Interaction&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Kim,%20Eunah&rft.date=2020-04-16&rft.volume=11&rft.issue=8&rft.spage=3039&rft.epage=3044&rft.pages=3039-3044&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.0c00691&rft_dat=%3Cacs%3Ec052547842%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |