In Situ Study of K+ Electrochemical Intercalating into MoS2 Flakes

By applying a single-flake microelectrode technique, a potassium ion (K+) intercalating into a MoS2 flake under potential control was observed using optical microscopy and in situ Raman spectroscopy. The K+ intercalation process showed high reversibility while cycling between open circuit potential...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2019-02, Vol.123 (8), p.5067-5072
Hauptverfasser: Li, Faxin, Zou, Jianli, Cao, Lujie, Li, Zhiqiang, Gu, Shuai, Liu, Ying, Zhang, Jianqiao, Liu, Hongtao, Lu, Zhouguang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5072
container_issue 8
container_start_page 5067
container_title Journal of physical chemistry. C
container_volume 123
creator Li, Faxin
Zou, Jianli
Cao, Lujie
Li, Zhiqiang
Gu, Shuai
Liu, Ying
Zhang, Jianqiao
Liu, Hongtao
Lu, Zhouguang
description By applying a single-flake microelectrode technique, a potassium ion (K+) intercalating into a MoS2 flake under potential control was observed using optical microscopy and in situ Raman spectroscopy. The K+ intercalation process showed high reversibility while cycling between open circuit potential (OCP) and 0.8 V, confirmed by the recovery of the Raman peaks. Further discharging to low potential (∼0.5 V) would cause the irreversible loss of the Raman peaks due to decomposition of the K+ intercalated compound (K x MoS2), which was confirmed by X-ray photoelectron spectroscopy analysis. On the basis of the diffusion behavior of K+ within the MoS2 layer observed visually by optical microscopy, we believed that K+ was inserted into MoS2 via a layer-by-layer fashion on a micrometer scale. K+ intercalation behavior in MoS2 flakes was further studied by using a galvanostatic intermittent titration technique, in which the abrupt decrease of diffusion coefficient (D K+ ) suggested the unfavorable energy change within K x MoS2 structure from 0.9 to 0.8 V. The in situ Raman spectra of MoS2 single flakes with a thickness of 2 nm (3 layers) and 47 nm (∼72 layers) during potassiation were compared with those of commercial microcrystalline MoS2 flakes that have a typical thickness of 50–80 nm and a size of 2 μm. Our results reveal important kinetic information of electrochemical K+ insertion into MoS2 and provide useful insights for the investigation of high-rate electrode materials for metal ion batteries.
doi_str_mv 10.1021/acs.jpcc.8b09898
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_8b09898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c067742068</sourcerecordid><originalsourceid>FETCH-LOGICAL-a122t-901b387286abeb62ee8b50c35bac8342ba09f0f8b48e0390c8b629dad909fc7b3</originalsourceid><addsrcrecordid>eNo9jzFPwzAUhC0EEqWwM3qHhGc7buwRqhYiihgCc2Q7DiQEG8XOwL-vgYrpTqfTnT6ELgnkBCi5USbkw5cxudAghRRHaEEko1lZcH7874vyFJ2FMABwBoQt0F3lcN3HGddxbr-x7_DjFd6M1sTJm3f72Rs14spFOyWjYu_ecO-ix0--png7qg8bztFJp8ZgLw66RK_bzcv6Ids931fr212mCKUxk0A0EyUVK6WtXlFrheZgGNfKCFZQrUB20AldCAtMghGpJFvVypSbUrMluv7bTajN4OfJpbeGQPPD3_yGib858LM9AGdPRw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>In Situ Study of K+ Electrochemical Intercalating into MoS2 Flakes</title><source>ACS Publications</source><creator>Li, Faxin ; Zou, Jianli ; Cao, Lujie ; Li, Zhiqiang ; Gu, Shuai ; Liu, Ying ; Zhang, Jianqiao ; Liu, Hongtao ; Lu, Zhouguang</creator><creatorcontrib>Li, Faxin ; Zou, Jianli ; Cao, Lujie ; Li, Zhiqiang ; Gu, Shuai ; Liu, Ying ; Zhang, Jianqiao ; Liu, Hongtao ; Lu, Zhouguang</creatorcontrib><description>By applying a single-flake microelectrode technique, a potassium ion (K+) intercalating into a MoS2 flake under potential control was observed using optical microscopy and in situ Raman spectroscopy. The K+ intercalation process showed high reversibility while cycling between open circuit potential (OCP) and 0.8 V, confirmed by the recovery of the Raman peaks. Further discharging to low potential (∼0.5 V) would cause the irreversible loss of the Raman peaks due to decomposition of the K+ intercalated compound (K x MoS2), which was confirmed by X-ray photoelectron spectroscopy analysis. On the basis of the diffusion behavior of K+ within the MoS2 layer observed visually by optical microscopy, we believed that K+ was inserted into MoS2 via a layer-by-layer fashion on a micrometer scale. K+ intercalation behavior in MoS2 flakes was further studied by using a galvanostatic intermittent titration technique, in which the abrupt decrease of diffusion coefficient (D K+ ) suggested the unfavorable energy change within K x MoS2 structure from 0.9 to 0.8 V. The in situ Raman spectra of MoS2 single flakes with a thickness of 2 nm (3 layers) and 47 nm (∼72 layers) during potassiation were compared with those of commercial microcrystalline MoS2 flakes that have a typical thickness of 50–80 nm and a size of 2 μm. Our results reveal important kinetic information of electrochemical K+ insertion into MoS2 and provide useful insights for the investigation of high-rate electrode materials for metal ion batteries.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.8b09898</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2019-02, Vol.123 (8), p.5067-5072</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3769-9356 ; 0000-0002-8139-1722</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.8b09898$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.8b09898$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Li, Faxin</creatorcontrib><creatorcontrib>Zou, Jianli</creatorcontrib><creatorcontrib>Cao, Lujie</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Gu, Shuai</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Zhang, Jianqiao</creatorcontrib><creatorcontrib>Liu, Hongtao</creatorcontrib><creatorcontrib>Lu, Zhouguang</creatorcontrib><title>In Situ Study of K+ Electrochemical Intercalating into MoS2 Flakes</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>By applying a single-flake microelectrode technique, a potassium ion (K+) intercalating into a MoS2 flake under potential control was observed using optical microscopy and in situ Raman spectroscopy. The K+ intercalation process showed high reversibility while cycling between open circuit potential (OCP) and 0.8 V, confirmed by the recovery of the Raman peaks. Further discharging to low potential (∼0.5 V) would cause the irreversible loss of the Raman peaks due to decomposition of the K+ intercalated compound (K x MoS2), which was confirmed by X-ray photoelectron spectroscopy analysis. On the basis of the diffusion behavior of K+ within the MoS2 layer observed visually by optical microscopy, we believed that K+ was inserted into MoS2 via a layer-by-layer fashion on a micrometer scale. K+ intercalation behavior in MoS2 flakes was further studied by using a galvanostatic intermittent titration technique, in which the abrupt decrease of diffusion coefficient (D K+ ) suggested the unfavorable energy change within K x MoS2 structure from 0.9 to 0.8 V. The in situ Raman spectra of MoS2 single flakes with a thickness of 2 nm (3 layers) and 47 nm (∼72 layers) during potassiation were compared with those of commercial microcrystalline MoS2 flakes that have a typical thickness of 50–80 nm and a size of 2 μm. Our results reveal important kinetic information of electrochemical K+ insertion into MoS2 and provide useful insights for the investigation of high-rate electrode materials for metal ion batteries.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9jzFPwzAUhC0EEqWwM3qHhGc7buwRqhYiihgCc2Q7DiQEG8XOwL-vgYrpTqfTnT6ELgnkBCi5USbkw5cxudAghRRHaEEko1lZcH7874vyFJ2FMABwBoQt0F3lcN3HGddxbr-x7_DjFd6M1sTJm3f72Rs14spFOyWjYu_ecO-ix0--png7qg8bztFJp8ZgLw66RK_bzcv6Ids931fr212mCKUxk0A0EyUVK6WtXlFrheZgGNfKCFZQrUB20AldCAtMghGpJFvVypSbUrMluv7bTajN4OfJpbeGQPPD3_yGib858LM9AGdPRw</recordid><startdate>20190228</startdate><enddate>20190228</enddate><creator>Li, Faxin</creator><creator>Zou, Jianli</creator><creator>Cao, Lujie</creator><creator>Li, Zhiqiang</creator><creator>Gu, Shuai</creator><creator>Liu, Ying</creator><creator>Zhang, Jianqiao</creator><creator>Liu, Hongtao</creator><creator>Lu, Zhouguang</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-3769-9356</orcidid><orcidid>https://orcid.org/0000-0002-8139-1722</orcidid></search><sort><creationdate>20190228</creationdate><title>In Situ Study of K+ Electrochemical Intercalating into MoS2 Flakes</title><author>Li, Faxin ; Zou, Jianli ; Cao, Lujie ; Li, Zhiqiang ; Gu, Shuai ; Liu, Ying ; Zhang, Jianqiao ; Liu, Hongtao ; Lu, Zhouguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a122t-901b387286abeb62ee8b50c35bac8342ba09f0f8b48e0390c8b629dad909fc7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Faxin</creatorcontrib><creatorcontrib>Zou, Jianli</creatorcontrib><creatorcontrib>Cao, Lujie</creatorcontrib><creatorcontrib>Li, Zhiqiang</creatorcontrib><creatorcontrib>Gu, Shuai</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Zhang, Jianqiao</creatorcontrib><creatorcontrib>Liu, Hongtao</creatorcontrib><creatorcontrib>Lu, Zhouguang</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Faxin</au><au>Zou, Jianli</au><au>Cao, Lujie</au><au>Li, Zhiqiang</au><au>Gu, Shuai</au><au>Liu, Ying</au><au>Zhang, Jianqiao</au><au>Liu, Hongtao</au><au>Lu, Zhouguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Study of K+ Electrochemical Intercalating into MoS2 Flakes</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2019-02-28</date><risdate>2019</risdate><volume>123</volume><issue>8</issue><spage>5067</spage><epage>5072</epage><pages>5067-5072</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>By applying a single-flake microelectrode technique, a potassium ion (K+) intercalating into a MoS2 flake under potential control was observed using optical microscopy and in situ Raman spectroscopy. The K+ intercalation process showed high reversibility while cycling between open circuit potential (OCP) and 0.8 V, confirmed by the recovery of the Raman peaks. Further discharging to low potential (∼0.5 V) would cause the irreversible loss of the Raman peaks due to decomposition of the K+ intercalated compound (K x MoS2), which was confirmed by X-ray photoelectron spectroscopy analysis. On the basis of the diffusion behavior of K+ within the MoS2 layer observed visually by optical microscopy, we believed that K+ was inserted into MoS2 via a layer-by-layer fashion on a micrometer scale. K+ intercalation behavior in MoS2 flakes was further studied by using a galvanostatic intermittent titration technique, in which the abrupt decrease of diffusion coefficient (D K+ ) suggested the unfavorable energy change within K x MoS2 structure from 0.9 to 0.8 V. The in situ Raman spectra of MoS2 single flakes with a thickness of 2 nm (3 layers) and 47 nm (∼72 layers) during potassiation were compared with those of commercial microcrystalline MoS2 flakes that have a typical thickness of 50–80 nm and a size of 2 μm. Our results reveal important kinetic information of electrochemical K+ insertion into MoS2 and provide useful insights for the investigation of high-rate electrode materials for metal ion batteries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.8b09898</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3769-9356</orcidid><orcidid>https://orcid.org/0000-0002-8139-1722</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2019-02, Vol.123 (8), p.5067-5072
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_8b09898
source ACS Publications
title In Situ Study of K+ Electrochemical Intercalating into MoS2 Flakes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Study%20of%20K+%20Electrochemical%20Intercalating%20into%20MoS2%20Flakes&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Li,%20Faxin&rft.date=2019-02-28&rft.volume=123&rft.issue=8&rft.spage=5067&rft.epage=5072&rft.pages=5067-5072&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.8b09898&rft_dat=%3Cacs%3Ec067742068%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true