Charge Transfer and Recombination Dynamics at Inkjet-Printed CuBi2O4 Electrodes for Photoelectrochemical Water Splitting

One of the principal challenges for solar-driven hydrogen production via water splitting is to improve the solar-to-hydrogen conversion efficiency. We have employed combinatorial chemistry using a materials inkjet printer, and selected CuBi2O4 as a promising p-type material. The steady-state photocu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2018-12, Vol.122 (48), p.27169-27179
Hauptverfasser: Rodríguez-Gutiérrez, Ingrid, García-Rodríguez, Rodrigo, Rodríguez-Pérez, Manuel, Vega-Poot, Alberto, Rodríguez Gattorno, Geonel, Parkinson, Bruce A, Oskam, Gerko
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27179
container_issue 48
container_start_page 27169
container_title Journal of physical chemistry. C
container_volume 122
creator Rodríguez-Gutiérrez, Ingrid
García-Rodríguez, Rodrigo
Rodríguez-Pérez, Manuel
Vega-Poot, Alberto
Rodríguez Gattorno, Geonel
Parkinson, Bruce A
Oskam, Gerko
description One of the principal challenges for solar-driven hydrogen production via water splitting is to improve the solar-to-hydrogen conversion efficiency. We have employed combinatorial chemistry using a materials inkjet printer, and selected CuBi2O4 as a promising p-type material. The steady-state photocurrent corresponding to water reduction for a 280 nm film at 0.2 V (RHE) was about 0.12 mA cm–2, significantly lower than that attainable for a 2 eV band gap semiconductor. We have applied intensity-modulated photocurrent spectroscopy (IMPS) to distinguish between the photoelectrochemical processes involved and to determine the associated time constants, in order to gain insight into the loss processes responsible for the low efficiency. The charge separation efficiency reaches up to 0.66 at sufficiently negative potential, however, the recombination rate constant is larger than that corresponding to electron transfer to the solution. This results in a relative charge transfer efficiency of 0.2–0.4, explaining the low photocurrent. At low light intensity, the relative charge transfer efficiency increases up to 0.8, indicating the promise of the material. Interestingly, at sufficiently positive applied potential, the IMPS spectrum of the CuBi2O4 photoelectrode switches sign, indicating a net modulated positive photocurrent. However, the rate constant for hole transfer to the solution is small resulting in a negligible steady-state anodic photocurrent. Strategies to improve the efficiency are discussed.
doi_str_mv 10.1021/acs.jpcc.8b07936
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_8b07936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a147013132</sourcerecordid><originalsourceid>FETCH-LOGICAL-a192t-ccdd319f9ba3b4c0fd32bc03eb742305adb1905a3a309b962a1e45458c9bad23</originalsourceid><addsrcrecordid>eNo9kE1Lw0AYhBdRsFbvHvcHmLpfabpHjVULhRYNeAzvfqTdmG7KZgv6711t8TTDwMzAg9AtJRNKGL0HPUzavdaTmSKF5NMzNKKSs6wQeX7-70Vxia6GoSUk54TyEfoqtxA2FlcB_NDYgMEb_GZ1v1POQ3S9x0_fHnZODxgiXvjP1sZsHZyP1uDy8OjYSuB5Z3UMvbEDbvqA19s-9vaY6a1NZejwB8Q0_77vXIzOb67RRQPdYG9OOkbV87wqX7Pl6mVRPiwzoJLFTGtjOJWNVMCV0KQxnClNuFWFYJzkYBSVSThwIpWcMqBW5CKf6dQwjI_R3XE28anb_hB8OqspqX-h1X9hglafoPEfYbBkJw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Charge Transfer and Recombination Dynamics at Inkjet-Printed CuBi2O4 Electrodes for Photoelectrochemical Water Splitting</title><source>American Chemical Society Journals</source><creator>Rodríguez-Gutiérrez, Ingrid ; García-Rodríguez, Rodrigo ; Rodríguez-Pérez, Manuel ; Vega-Poot, Alberto ; Rodríguez Gattorno, Geonel ; Parkinson, Bruce A ; Oskam, Gerko</creator><creatorcontrib>Rodríguez-Gutiérrez, Ingrid ; García-Rodríguez, Rodrigo ; Rodríguez-Pérez, Manuel ; Vega-Poot, Alberto ; Rodríguez Gattorno, Geonel ; Parkinson, Bruce A ; Oskam, Gerko</creatorcontrib><description>One of the principal challenges for solar-driven hydrogen production via water splitting is to improve the solar-to-hydrogen conversion efficiency. We have employed combinatorial chemistry using a materials inkjet printer, and selected CuBi2O4 as a promising p-type material. The steady-state photocurrent corresponding to water reduction for a 280 nm film at 0.2 V (RHE) was about 0.12 mA cm–2, significantly lower than that attainable for a 2 eV band gap semiconductor. We have applied intensity-modulated photocurrent spectroscopy (IMPS) to distinguish between the photoelectrochemical processes involved and to determine the associated time constants, in order to gain insight into the loss processes responsible for the low efficiency. The charge separation efficiency reaches up to 0.66 at sufficiently negative potential, however, the recombination rate constant is larger than that corresponding to electron transfer to the solution. This results in a relative charge transfer efficiency of 0.2–0.4, explaining the low photocurrent. At low light intensity, the relative charge transfer efficiency increases up to 0.8, indicating the promise of the material. Interestingly, at sufficiently positive applied potential, the IMPS spectrum of the CuBi2O4 photoelectrode switches sign, indicating a net modulated positive photocurrent. However, the rate constant for hole transfer to the solution is small resulting in a negligible steady-state anodic photocurrent. Strategies to improve the efficiency are discussed.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.8b07936</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2018-12, Vol.122 (48), p.27169-27179</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8950-1922 ; 0000-0002-2105-5874 ; 0000-0001-7438-6311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.8b07936$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.8b07936$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Rodríguez-Gutiérrez, Ingrid</creatorcontrib><creatorcontrib>García-Rodríguez, Rodrigo</creatorcontrib><creatorcontrib>Rodríguez-Pérez, Manuel</creatorcontrib><creatorcontrib>Vega-Poot, Alberto</creatorcontrib><creatorcontrib>Rodríguez Gattorno, Geonel</creatorcontrib><creatorcontrib>Parkinson, Bruce A</creatorcontrib><creatorcontrib>Oskam, Gerko</creatorcontrib><title>Charge Transfer and Recombination Dynamics at Inkjet-Printed CuBi2O4 Electrodes for Photoelectrochemical Water Splitting</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>One of the principal challenges for solar-driven hydrogen production via water splitting is to improve the solar-to-hydrogen conversion efficiency. We have employed combinatorial chemistry using a materials inkjet printer, and selected CuBi2O4 as a promising p-type material. The steady-state photocurrent corresponding to water reduction for a 280 nm film at 0.2 V (RHE) was about 0.12 mA cm–2, significantly lower than that attainable for a 2 eV band gap semiconductor. We have applied intensity-modulated photocurrent spectroscopy (IMPS) to distinguish between the photoelectrochemical processes involved and to determine the associated time constants, in order to gain insight into the loss processes responsible for the low efficiency. The charge separation efficiency reaches up to 0.66 at sufficiently negative potential, however, the recombination rate constant is larger than that corresponding to electron transfer to the solution. This results in a relative charge transfer efficiency of 0.2–0.4, explaining the low photocurrent. At low light intensity, the relative charge transfer efficiency increases up to 0.8, indicating the promise of the material. Interestingly, at sufficiently positive applied potential, the IMPS spectrum of the CuBi2O4 photoelectrode switches sign, indicating a net modulated positive photocurrent. However, the rate constant for hole transfer to the solution is small resulting in a negligible steady-state anodic photocurrent. Strategies to improve the efficiency are discussed.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kE1Lw0AYhBdRsFbvHvcHmLpfabpHjVULhRYNeAzvfqTdmG7KZgv6711t8TTDwMzAg9AtJRNKGL0HPUzavdaTmSKF5NMzNKKSs6wQeX7-70Vxia6GoSUk54TyEfoqtxA2FlcB_NDYgMEb_GZ1v1POQ3S9x0_fHnZODxgiXvjP1sZsHZyP1uDy8OjYSuB5Z3UMvbEDbvqA19s-9vaY6a1NZejwB8Q0_77vXIzOb67RRQPdYG9OOkbV87wqX7Pl6mVRPiwzoJLFTGtjOJWNVMCV0KQxnClNuFWFYJzkYBSVSThwIpWcMqBW5CKf6dQwjI_R3XE28anb_hB8OqspqX-h1X9hglafoPEfYbBkJw</recordid><startdate>20181206</startdate><enddate>20181206</enddate><creator>Rodríguez-Gutiérrez, Ingrid</creator><creator>García-Rodríguez, Rodrigo</creator><creator>Rodríguez-Pérez, Manuel</creator><creator>Vega-Poot, Alberto</creator><creator>Rodríguez Gattorno, Geonel</creator><creator>Parkinson, Bruce A</creator><creator>Oskam, Gerko</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-8950-1922</orcidid><orcidid>https://orcid.org/0000-0002-2105-5874</orcidid><orcidid>https://orcid.org/0000-0001-7438-6311</orcidid></search><sort><creationdate>20181206</creationdate><title>Charge Transfer and Recombination Dynamics at Inkjet-Printed CuBi2O4 Electrodes for Photoelectrochemical Water Splitting</title><author>Rodríguez-Gutiérrez, Ingrid ; García-Rodríguez, Rodrigo ; Rodríguez-Pérez, Manuel ; Vega-Poot, Alberto ; Rodríguez Gattorno, Geonel ; Parkinson, Bruce A ; Oskam, Gerko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a192t-ccdd319f9ba3b4c0fd32bc03eb742305adb1905a3a309b962a1e45458c9bad23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-Gutiérrez, Ingrid</creatorcontrib><creatorcontrib>García-Rodríguez, Rodrigo</creatorcontrib><creatorcontrib>Rodríguez-Pérez, Manuel</creatorcontrib><creatorcontrib>Vega-Poot, Alberto</creatorcontrib><creatorcontrib>Rodríguez Gattorno, Geonel</creatorcontrib><creatorcontrib>Parkinson, Bruce A</creatorcontrib><creatorcontrib>Oskam, Gerko</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-Gutiérrez, Ingrid</au><au>García-Rodríguez, Rodrigo</au><au>Rodríguez-Pérez, Manuel</au><au>Vega-Poot, Alberto</au><au>Rodríguez Gattorno, Geonel</au><au>Parkinson, Bruce A</au><au>Oskam, Gerko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge Transfer and Recombination Dynamics at Inkjet-Printed CuBi2O4 Electrodes for Photoelectrochemical Water Splitting</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2018-12-06</date><risdate>2018</risdate><volume>122</volume><issue>48</issue><spage>27169</spage><epage>27179</epage><pages>27169-27179</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>One of the principal challenges for solar-driven hydrogen production via water splitting is to improve the solar-to-hydrogen conversion efficiency. We have employed combinatorial chemistry using a materials inkjet printer, and selected CuBi2O4 as a promising p-type material. The steady-state photocurrent corresponding to water reduction for a 280 nm film at 0.2 V (RHE) was about 0.12 mA cm–2, significantly lower than that attainable for a 2 eV band gap semiconductor. We have applied intensity-modulated photocurrent spectroscopy (IMPS) to distinguish between the photoelectrochemical processes involved and to determine the associated time constants, in order to gain insight into the loss processes responsible for the low efficiency. The charge separation efficiency reaches up to 0.66 at sufficiently negative potential, however, the recombination rate constant is larger than that corresponding to electron transfer to the solution. This results in a relative charge transfer efficiency of 0.2–0.4, explaining the low photocurrent. At low light intensity, the relative charge transfer efficiency increases up to 0.8, indicating the promise of the material. Interestingly, at sufficiently positive applied potential, the IMPS spectrum of the CuBi2O4 photoelectrode switches sign, indicating a net modulated positive photocurrent. However, the rate constant for hole transfer to the solution is small resulting in a negligible steady-state anodic photocurrent. Strategies to improve the efficiency are discussed.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.8b07936</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8950-1922</orcidid><orcidid>https://orcid.org/0000-0002-2105-5874</orcidid><orcidid>https://orcid.org/0000-0001-7438-6311</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2018-12, Vol.122 (48), p.27169-27179
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_8b07936
source American Chemical Society Journals
title Charge Transfer and Recombination Dynamics at Inkjet-Printed CuBi2O4 Electrodes for Photoelectrochemical Water Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A55%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20Transfer%20and%20Recombination%20Dynamics%20at%20Inkjet-Printed%20CuBi2O4%20Electrodes%20for%20Photoelectrochemical%20Water%20Splitting&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Rodri%CC%81guez-Gutie%CC%81rrez,%20Ingrid&rft.date=2018-12-06&rft.volume=122&rft.issue=48&rft.spage=27169&rft.epage=27179&rft.pages=27169-27179&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.8b07936&rft_dat=%3Cacs%3Ea147013132%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true