Oxidation of Sulfur Dioxide over V2O5/TiO2 Catalyst with Low Vanadium Loading: A Theoretical Study

Oxidation of SO2 to SO3 is one of the major drawbacks of the commonly used vanadia-based selective catalytic reduction catalyst. Density functional theory calculations were applied to study the interaction between SO2 and the VO x /TiO2 catalyst. Two parallel calculations, one is cluster models impl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2018-03, Vol.122 (8), p.4517-4523
Hauptverfasser: Du, Xuesen, Xue, Jingyu, Wang, Xiangmin, Chen, Yanrong, Ran, Jingyu, Zhang, Li
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4523
container_issue 8
container_start_page 4517
container_title Journal of physical chemistry. C
container_volume 122
creator Du, Xuesen
Xue, Jingyu
Wang, Xiangmin
Chen, Yanrong
Ran, Jingyu
Zhang, Li
description Oxidation of SO2 to SO3 is one of the major drawbacks of the commonly used vanadia-based selective catalytic reduction catalyst. Density functional theory calculations were applied to study the interaction between SO2 and the VO x /TiO2 catalyst. Two parallel calculations, one is cluster models implementing the hybrid method and the other is periodical surface model implementing the Perdew–Burke–Ernzerhof method, were made to compare them with each other. The results show that the uncovered TiO2 surface can be easily sulfated by SO2, whereas it can barely oxidize SO2 to SO3. Supported vanadia site, either vanadia monomer or vanadia dimer, is not a favorable site for SO2 adsorption. However, SO2 can be oxidized by vanadia sites through a sulfation route in which a −V­(SO4)– configuration is formed. The terminal oxygen of VO is found to bond with SO2 to produce SO3. The Brønsted acid site can enhance SO2 adsorption, whereas it will be eliminated after interacting with SO2 because the hydrogen ion of Brønsted acid will be deprived by SO2.
doi_str_mv 10.1021/acs.jpcc.8b00296
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_8b00296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c945237882</sourcerecordid><originalsourceid>FETCH-LOGICAL-a192t-32752ade932415a58cdbaf9aca7618c9917f1f1be3e5330961aaa2bdce5ffc303</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EEqVw5-gPIK3XrpOYW1UoIFXKoaXXaOPY1FWIUeJQ-vcYqDjN7BxmVo-QW2ATYBymqPvJ_kPrSV4xxlV6RkagBE-ymZTn_36WXZKrvt8zJgUDMSJV8eVqDM631Fu6Hho7dPTB-Zga6j9NR7e8kNONKzhdYMDm2Ad6cGFHV_5At9hi7Yb3eERt3-7pnG52xncmOI0NXYehPl6TC4tNb25OOiavy8fN4jlZFU8vi_kqQVA8JIJnkmNt4qMzkChzXVdoFWrMUsi1UpBZsFAZYaQQTKWAiLyqtZHWasHEmNz99UYU5d4PXRvXSmDlD5_yN4x8yhMf8Q0naFrx</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oxidation of Sulfur Dioxide over V2O5/TiO2 Catalyst with Low Vanadium Loading: A Theoretical Study</title><source>ACS Publications</source><creator>Du, Xuesen ; Xue, Jingyu ; Wang, Xiangmin ; Chen, Yanrong ; Ran, Jingyu ; Zhang, Li</creator><creatorcontrib>Du, Xuesen ; Xue, Jingyu ; Wang, Xiangmin ; Chen, Yanrong ; Ran, Jingyu ; Zhang, Li</creatorcontrib><description>Oxidation of SO2 to SO3 is one of the major drawbacks of the commonly used vanadia-based selective catalytic reduction catalyst. Density functional theory calculations were applied to study the interaction between SO2 and the VO x /TiO2 catalyst. Two parallel calculations, one is cluster models implementing the hybrid method and the other is periodical surface model implementing the Perdew–Burke–Ernzerhof method, were made to compare them with each other. The results show that the uncovered TiO2 surface can be easily sulfated by SO2, whereas it can barely oxidize SO2 to SO3. Supported vanadia site, either vanadia monomer or vanadia dimer, is not a favorable site for SO2 adsorption. However, SO2 can be oxidized by vanadia sites through a sulfation route in which a −V­(SO4)– configuration is formed. The terminal oxygen of VO is found to bond with SO2 to produce SO3. The Brønsted acid site can enhance SO2 adsorption, whereas it will be eliminated after interacting with SO2 because the hydrogen ion of Brønsted acid will be deprived by SO2.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.8b00296</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2018-03, Vol.122 (8), p.4517-4523</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3647-1002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.8b00296$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.8b00296$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Du, Xuesen</creatorcontrib><creatorcontrib>Xue, Jingyu</creatorcontrib><creatorcontrib>Wang, Xiangmin</creatorcontrib><creatorcontrib>Chen, Yanrong</creatorcontrib><creatorcontrib>Ran, Jingyu</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><title>Oxidation of Sulfur Dioxide over V2O5/TiO2 Catalyst with Low Vanadium Loading: A Theoretical Study</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Oxidation of SO2 to SO3 is one of the major drawbacks of the commonly used vanadia-based selective catalytic reduction catalyst. Density functional theory calculations were applied to study the interaction between SO2 and the VO x /TiO2 catalyst. Two parallel calculations, one is cluster models implementing the hybrid method and the other is periodical surface model implementing the Perdew–Burke–Ernzerhof method, were made to compare them with each other. The results show that the uncovered TiO2 surface can be easily sulfated by SO2, whereas it can barely oxidize SO2 to SO3. Supported vanadia site, either vanadia monomer or vanadia dimer, is not a favorable site for SO2 adsorption. However, SO2 can be oxidized by vanadia sites through a sulfation route in which a −V­(SO4)– configuration is formed. The terminal oxygen of VO is found to bond with SO2 to produce SO3. The Brønsted acid site can enhance SO2 adsorption, whereas it will be eliminated after interacting with SO2 because the hydrogen ion of Brønsted acid will be deprived by SO2.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kMFOwzAQRC0EEqVw5-gPIK3XrpOYW1UoIFXKoaXXaOPY1FWIUeJQ-vcYqDjN7BxmVo-QW2ATYBymqPvJ_kPrSV4xxlV6RkagBE-ymZTn_36WXZKrvt8zJgUDMSJV8eVqDM631Fu6Hho7dPTB-Zga6j9NR7e8kNONKzhdYMDm2Ad6cGFHV_5At9hi7Yb3eERt3-7pnG52xncmOI0NXYehPl6TC4tNb25OOiavy8fN4jlZFU8vi_kqQVA8JIJnkmNt4qMzkChzXVdoFWrMUsi1UpBZsFAZYaQQTKWAiLyqtZHWasHEmNz99UYU5d4PXRvXSmDlD5_yN4x8yhMf8Q0naFrx</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Du, Xuesen</creator><creator>Xue, Jingyu</creator><creator>Wang, Xiangmin</creator><creator>Chen, Yanrong</creator><creator>Ran, Jingyu</creator><creator>Zhang, Li</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-3647-1002</orcidid></search><sort><creationdate>20180301</creationdate><title>Oxidation of Sulfur Dioxide over V2O5/TiO2 Catalyst with Low Vanadium Loading: A Theoretical Study</title><author>Du, Xuesen ; Xue, Jingyu ; Wang, Xiangmin ; Chen, Yanrong ; Ran, Jingyu ; Zhang, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a192t-32752ade932415a58cdbaf9aca7618c9917f1f1be3e5330961aaa2bdce5ffc303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Du, Xuesen</creatorcontrib><creatorcontrib>Xue, Jingyu</creatorcontrib><creatorcontrib>Wang, Xiangmin</creatorcontrib><creatorcontrib>Chen, Yanrong</creatorcontrib><creatorcontrib>Ran, Jingyu</creatorcontrib><creatorcontrib>Zhang, Li</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Xuesen</au><au>Xue, Jingyu</au><au>Wang, Xiangmin</au><au>Chen, Yanrong</au><au>Ran, Jingyu</au><au>Zhang, Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation of Sulfur Dioxide over V2O5/TiO2 Catalyst with Low Vanadium Loading: A Theoretical Study</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>122</volume><issue>8</issue><spage>4517</spage><epage>4523</epage><pages>4517-4523</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Oxidation of SO2 to SO3 is one of the major drawbacks of the commonly used vanadia-based selective catalytic reduction catalyst. Density functional theory calculations were applied to study the interaction between SO2 and the VO x /TiO2 catalyst. Two parallel calculations, one is cluster models implementing the hybrid method and the other is periodical surface model implementing the Perdew–Burke–Ernzerhof method, were made to compare them with each other. The results show that the uncovered TiO2 surface can be easily sulfated by SO2, whereas it can barely oxidize SO2 to SO3. Supported vanadia site, either vanadia monomer or vanadia dimer, is not a favorable site for SO2 adsorption. However, SO2 can be oxidized by vanadia sites through a sulfation route in which a −V­(SO4)– configuration is formed. The terminal oxygen of VO is found to bond with SO2 to produce SO3. The Brønsted acid site can enhance SO2 adsorption, whereas it will be eliminated after interacting with SO2 because the hydrogen ion of Brønsted acid will be deprived by SO2.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.8b00296</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3647-1002</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2018-03, Vol.122 (8), p.4517-4523
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_8b00296
source ACS Publications
title Oxidation of Sulfur Dioxide over V2O5/TiO2 Catalyst with Low Vanadium Loading: A Theoretical Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A20%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20of%20Sulfur%20Dioxide%20over%20V2O5/TiO2%20Catalyst%20with%20Low%20Vanadium%20Loading:%20A%20Theoretical%20Study&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Du,%20Xuesen&rft.date=2018-03-01&rft.volume=122&rft.issue=8&rft.spage=4517&rft.epage=4523&rft.pages=4517-4523&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.8b00296&rft_dat=%3Cacs%3Ec945237882%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true