CO2 Conversion in a Gliding Arc Plasmatron: Multidimensional Modeling for Improved Efficiency

The gliding arc plasmatron (GAP) is a highly efficient atmospheric plasma source, which is very promising for CO2 conversion applications. To understand its operation principles and to improve its application, we present here comprehensive modeling results, obtained by means of computational fluid d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2017-11, Vol.121 (44), p.24470-24479
Hauptverfasser: Trenchev, G, Kolev, St, Wang, W, Ramakers, M, Bogaerts, A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24479
container_issue 44
container_start_page 24470
container_title Journal of physical chemistry. C
container_volume 121
creator Trenchev, G
Kolev, St
Wang, W
Ramakers, M
Bogaerts, A
description The gliding arc plasmatron (GAP) is a highly efficient atmospheric plasma source, which is very promising for CO2 conversion applications. To understand its operation principles and to improve its application, we present here comprehensive modeling results, obtained by means of computational fluid dynamics simulations and plasma modeling. Because of the complexity of the CO2 plasma, a full 3D plasma model would be computationally impractical. Therefore, we combine a 3D turbulent gas flow model with a 2D plasma and gas heating model in order to calculate the plasma parameters and CO2 conversion characteristics. In addition, a complete 3D gas flow and plasma model with simplified argon chemistry is used to evaluate the gliding arc evolution in space and time. The calculated values are compared with experimental data from literature as much as possible in order to validate the model. The insights obtained in this study are very helpful for improving the application of CO2 conversion, as they allow us to identify the limiting factors in the performance, based on which solutions can be provided on how to further improve the capabilities of CO2 conversion in the GAP.
doi_str_mv 10.1021/acs.jpcc.7b08511
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_7b08511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a202439861</sourcerecordid><originalsourceid>FETCH-LOGICAL-a271t-25996f42c123a464fe7b5e21e41e45e1afe9cee83b4120caab65e5d013055fe43</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxRdRsFbvHvcDmLizf5LGWwm1LbTUgx4lbDazkpDslmxa8NubaBEG3jDzGN78CHkEFgPj8KxNiJujMXFasoUCuCIzyASPUqnU9X8v01tyF0LDmBIMxIx85gdOc-_O2IfaO1o7qum6ravafdFlb-hbq0Onh967F7o_tcO46dBNXt3Sva-wnZzW93TbHXt_xoqurK1Njc5835Mbq9uADxedk4_X1Xu-iXaH9TZf7iLNUxgirrIssZIb4ELLRFpMS4UcUI6lELTFzCAuRCmBM6N1mShU1fgAU8qiFHPy9Hd3pFA0_tSP4UIBrJjQFL_DEU1xQSN-AJg1WYU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CO2 Conversion in a Gliding Arc Plasmatron: Multidimensional Modeling for Improved Efficiency</title><source>American Chemical Society Journals</source><creator>Trenchev, G ; Kolev, St ; Wang, W ; Ramakers, M ; Bogaerts, A</creator><creatorcontrib>Trenchev, G ; Kolev, St ; Wang, W ; Ramakers, M ; Bogaerts, A</creatorcontrib><description>The gliding arc plasmatron (GAP) is a highly efficient atmospheric plasma source, which is very promising for CO2 conversion applications. To understand its operation principles and to improve its application, we present here comprehensive modeling results, obtained by means of computational fluid dynamics simulations and plasma modeling. Because of the complexity of the CO2 plasma, a full 3D plasma model would be computationally impractical. Therefore, we combine a 3D turbulent gas flow model with a 2D plasma and gas heating model in order to calculate the plasma parameters and CO2 conversion characteristics. In addition, a complete 3D gas flow and plasma model with simplified argon chemistry is used to evaluate the gliding arc evolution in space and time. The calculated values are compared with experimental data from literature as much as possible in order to validate the model. The insights obtained in this study are very helpful for improving the application of CO2 conversion, as they allow us to identify the limiting factors in the performance, based on which solutions can be provided on how to further improve the capabilities of CO2 conversion in the GAP.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.7b08511</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2017-11, Vol.121 (44), p.24470-24479</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7145-3398 ; 0000-0002-0359-4858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.7b08511$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.7b08511$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Trenchev, G</creatorcontrib><creatorcontrib>Kolev, St</creatorcontrib><creatorcontrib>Wang, W</creatorcontrib><creatorcontrib>Ramakers, M</creatorcontrib><creatorcontrib>Bogaerts, A</creatorcontrib><title>CO2 Conversion in a Gliding Arc Plasmatron: Multidimensional Modeling for Improved Efficiency</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The gliding arc plasmatron (GAP) is a highly efficient atmospheric plasma source, which is very promising for CO2 conversion applications. To understand its operation principles and to improve its application, we present here comprehensive modeling results, obtained by means of computational fluid dynamics simulations and plasma modeling. Because of the complexity of the CO2 plasma, a full 3D plasma model would be computationally impractical. Therefore, we combine a 3D turbulent gas flow model with a 2D plasma and gas heating model in order to calculate the plasma parameters and CO2 conversion characteristics. In addition, a complete 3D gas flow and plasma model with simplified argon chemistry is used to evaluate the gliding arc evolution in space and time. The calculated values are compared with experimental data from literature as much as possible in order to validate the model. The insights obtained in this study are very helpful for improving the application of CO2 conversion, as they allow us to identify the limiting factors in the performance, based on which solutions can be provided on how to further improve the capabilities of CO2 conversion in the GAP.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kE9Lw0AQxRdRsFbvHvcDmLizf5LGWwm1LbTUgx4lbDazkpDslmxa8NubaBEG3jDzGN78CHkEFgPj8KxNiJujMXFasoUCuCIzyASPUqnU9X8v01tyF0LDmBIMxIx85gdOc-_O2IfaO1o7qum6ravafdFlb-hbq0Onh967F7o_tcO46dBNXt3Sva-wnZzW93TbHXt_xoqurK1Njc5835Mbq9uADxedk4_X1Xu-iXaH9TZf7iLNUxgirrIssZIb4ELLRFpMS4UcUI6lELTFzCAuRCmBM6N1mShU1fgAU8qiFHPy9Hd3pFA0_tSP4UIBrJjQFL_DEU1xQSN-AJg1WYU</recordid><startdate>20171109</startdate><enddate>20171109</enddate><creator>Trenchev, G</creator><creator>Kolev, St</creator><creator>Wang, W</creator><creator>Ramakers, M</creator><creator>Bogaerts, A</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-7145-3398</orcidid><orcidid>https://orcid.org/0000-0002-0359-4858</orcidid></search><sort><creationdate>20171109</creationdate><title>CO2 Conversion in a Gliding Arc Plasmatron: Multidimensional Modeling for Improved Efficiency</title><author>Trenchev, G ; Kolev, St ; Wang, W ; Ramakers, M ; Bogaerts, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a271t-25996f42c123a464fe7b5e21e41e45e1afe9cee83b4120caab65e5d013055fe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trenchev, G</creatorcontrib><creatorcontrib>Kolev, St</creatorcontrib><creatorcontrib>Wang, W</creatorcontrib><creatorcontrib>Ramakers, M</creatorcontrib><creatorcontrib>Bogaerts, A</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trenchev, G</au><au>Kolev, St</au><au>Wang, W</au><au>Ramakers, M</au><au>Bogaerts, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO2 Conversion in a Gliding Arc Plasmatron: Multidimensional Modeling for Improved Efficiency</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2017-11-09</date><risdate>2017</risdate><volume>121</volume><issue>44</issue><spage>24470</spage><epage>24479</epage><pages>24470-24479</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The gliding arc plasmatron (GAP) is a highly efficient atmospheric plasma source, which is very promising for CO2 conversion applications. To understand its operation principles and to improve its application, we present here comprehensive modeling results, obtained by means of computational fluid dynamics simulations and plasma modeling. Because of the complexity of the CO2 plasma, a full 3D plasma model would be computationally impractical. Therefore, we combine a 3D turbulent gas flow model with a 2D plasma and gas heating model in order to calculate the plasma parameters and CO2 conversion characteristics. In addition, a complete 3D gas flow and plasma model with simplified argon chemistry is used to evaluate the gliding arc evolution in space and time. The calculated values are compared with experimental data from literature as much as possible in order to validate the model. The insights obtained in this study are very helpful for improving the application of CO2 conversion, as they allow us to identify the limiting factors in the performance, based on which solutions can be provided on how to further improve the capabilities of CO2 conversion in the GAP.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.7b08511</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7145-3398</orcidid><orcidid>https://orcid.org/0000-0002-0359-4858</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2017-11, Vol.121 (44), p.24470-24479
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_7b08511
source American Chemical Society Journals
title CO2 Conversion in a Gliding Arc Plasmatron: Multidimensional Modeling for Improved Efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A04%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO2%20Conversion%20in%20a%20Gliding%20Arc%20Plasmatron:%20Multidimensional%20Modeling%20for%20Improved%20Efficiency&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Trenchev,%20G&rft.date=2017-11-09&rft.volume=121&rft.issue=44&rft.spage=24470&rft.epage=24479&rft.pages=24470-24479&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.7b08511&rft_dat=%3Cacs%3Ea202439861%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true