Oxygen Reduction Mechanisms in Nanostructured La0.8Sr0.2MnO3 Cathodes for Solid Oxide Fuel Cells

In this work we outline the mechanisms contributing to the oxygen reduction reaction in nanostructured cathodes of La0.8Sr0.2MnO3 (LSM) for Solid Oxide Fuel Cells (SOFC). These cathodes, developed from LSM nanostructured tubes, can be used at lower temperatures compared to microstructured ones, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2017-03, Vol.121 (12), p.6533-6539
Hauptverfasser: Sacanell, Joaquín, Hernández Sánchez, Joaquín, Rubio López, Adrián Ezequiel, Martinelli, Hernán, Siepe, Jimena, Leyva, Ana G, Ferrari, Valeria, Juan, Dilson, Pruneda, Miguel, Mejía Gómez, Augusto, Lamas, Diego G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6539
container_issue 12
container_start_page 6533
container_title Journal of physical chemistry. C
container_volume 121
creator Sacanell, Joaquín
Hernández Sánchez, Joaquín
Rubio López, Adrián Ezequiel
Martinelli, Hernán
Siepe, Jimena
Leyva, Ana G
Ferrari, Valeria
Juan, Dilson
Pruneda, Miguel
Mejía Gómez, Augusto
Lamas, Diego G
description In this work we outline the mechanisms contributing to the oxygen reduction reaction in nanostructured cathodes of La0.8Sr0.2MnO3 (LSM) for Solid Oxide Fuel Cells (SOFC). These cathodes, developed from LSM nanostructured tubes, can be used at lower temperatures compared to microstructured ones, and this is a crucial fact to avoid the degradation of the fuel cell components. This reduction of the operating temperatures stems mainly from two factors: (i) the appearance of significant oxide ion diffusion through the cathode material in which the nanostructure plays a key role and (ii) an optimized gas phase diffusion of oxygen through the porous structure of the cathode, which becomes negligible. A detailed analysis of our Electrochemical Impedance Spectroscopy supported by first-principles calculations point toward an improved overall cathodic performance driven by a fast transport of oxide ions through the cathode surface.
doi_str_mv 10.1021/acs.jpcc.7b00627
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_7b00627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c64582250</sourcerecordid><originalsourceid>FETCH-LOGICAL-a192t-4c0030f0267bd9594286f65270deb0cc8635d09a5edf85610d529b9af19666143</originalsourceid><addsrcrecordid>eNo9kE1LxDAYhIMouK7ePeYH2PomaZLmKMV1hV0Lrp5rmg-3pabStLD-e6sunmaYgRl4ELomkBKg5FabmLafxqSyBhBUnqAFUYwmMuP89N9n8hxdxNgCcAaELdBbefh6dwE_OzuZsekD3jqz16GJHxE3AT_p0MdxmLtpcBZvNKT5boCUbkPJcKHHfW9dxL4f8K7vGovLQ2MdXk2uw4XruniJzrzuors66hK9ru5finWyKR8ei7tNoomiY5IZAAYeqJC1VVxlNBdecCrBuhqMyQXjFpTmzvqcCwKWU1Ur7YkSQpCMLdHN3-4Momr7aQjzW0Wg-qFT_YYznepIh30D-YNYhA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oxygen Reduction Mechanisms in Nanostructured La0.8Sr0.2MnO3 Cathodes for Solid Oxide Fuel Cells</title><source>ACS Publications</source><creator>Sacanell, Joaquín ; Hernández Sánchez, Joaquín ; Rubio López, Adrián Ezequiel ; Martinelli, Hernán ; Siepe, Jimena ; Leyva, Ana G ; Ferrari, Valeria ; Juan, Dilson ; Pruneda, Miguel ; Mejía Gómez, Augusto ; Lamas, Diego G</creator><creatorcontrib>Sacanell, Joaquín ; Hernández Sánchez, Joaquín ; Rubio López, Adrián Ezequiel ; Martinelli, Hernán ; Siepe, Jimena ; Leyva, Ana G ; Ferrari, Valeria ; Juan, Dilson ; Pruneda, Miguel ; Mejía Gómez, Augusto ; Lamas, Diego G</creatorcontrib><description>In this work we outline the mechanisms contributing to the oxygen reduction reaction in nanostructured cathodes of La0.8Sr0.2MnO3 (LSM) for Solid Oxide Fuel Cells (SOFC). These cathodes, developed from LSM nanostructured tubes, can be used at lower temperatures compared to microstructured ones, and this is a crucial fact to avoid the degradation of the fuel cell components. This reduction of the operating temperatures stems mainly from two factors: (i) the appearance of significant oxide ion diffusion through the cathode material in which the nanostructure plays a key role and (ii) an optimized gas phase diffusion of oxygen through the porous structure of the cathode, which becomes negligible. A detailed analysis of our Electrochemical Impedance Spectroscopy supported by first-principles calculations point toward an improved overall cathodic performance driven by a fast transport of oxide ions through the cathode surface.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.7b00627</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2017-03, Vol.121 (12), p.6533-6539</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8209-8106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.7b00627$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.7b00627$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Sacanell, Joaquín</creatorcontrib><creatorcontrib>Hernández Sánchez, Joaquín</creatorcontrib><creatorcontrib>Rubio López, Adrián Ezequiel</creatorcontrib><creatorcontrib>Martinelli, Hernán</creatorcontrib><creatorcontrib>Siepe, Jimena</creatorcontrib><creatorcontrib>Leyva, Ana G</creatorcontrib><creatorcontrib>Ferrari, Valeria</creatorcontrib><creatorcontrib>Juan, Dilson</creatorcontrib><creatorcontrib>Pruneda, Miguel</creatorcontrib><creatorcontrib>Mejía Gómez, Augusto</creatorcontrib><creatorcontrib>Lamas, Diego G</creatorcontrib><title>Oxygen Reduction Mechanisms in Nanostructured La0.8Sr0.2MnO3 Cathodes for Solid Oxide Fuel Cells</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>In this work we outline the mechanisms contributing to the oxygen reduction reaction in nanostructured cathodes of La0.8Sr0.2MnO3 (LSM) for Solid Oxide Fuel Cells (SOFC). These cathodes, developed from LSM nanostructured tubes, can be used at lower temperatures compared to microstructured ones, and this is a crucial fact to avoid the degradation of the fuel cell components. This reduction of the operating temperatures stems mainly from two factors: (i) the appearance of significant oxide ion diffusion through the cathode material in which the nanostructure plays a key role and (ii) an optimized gas phase diffusion of oxygen through the porous structure of the cathode, which becomes negligible. A detailed analysis of our Electrochemical Impedance Spectroscopy supported by first-principles calculations point toward an improved overall cathodic performance driven by a fast transport of oxide ions through the cathode surface.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kE1LxDAYhIMouK7ePeYH2PomaZLmKMV1hV0Lrp5rmg-3pabStLD-e6sunmaYgRl4ELomkBKg5FabmLafxqSyBhBUnqAFUYwmMuP89N9n8hxdxNgCcAaELdBbefh6dwE_OzuZsekD3jqz16GJHxE3AT_p0MdxmLtpcBZvNKT5boCUbkPJcKHHfW9dxL4f8K7vGovLQ2MdXk2uw4XruniJzrzuors66hK9ru5finWyKR8ei7tNoomiY5IZAAYeqJC1VVxlNBdecCrBuhqMyQXjFpTmzvqcCwKWU1Ur7YkSQpCMLdHN3-4Momr7aQjzW0Wg-qFT_YYznepIh30D-YNYhA</recordid><startdate>20170330</startdate><enddate>20170330</enddate><creator>Sacanell, Joaquín</creator><creator>Hernández Sánchez, Joaquín</creator><creator>Rubio López, Adrián Ezequiel</creator><creator>Martinelli, Hernán</creator><creator>Siepe, Jimena</creator><creator>Leyva, Ana G</creator><creator>Ferrari, Valeria</creator><creator>Juan, Dilson</creator><creator>Pruneda, Miguel</creator><creator>Mejía Gómez, Augusto</creator><creator>Lamas, Diego G</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-8209-8106</orcidid></search><sort><creationdate>20170330</creationdate><title>Oxygen Reduction Mechanisms in Nanostructured La0.8Sr0.2MnO3 Cathodes for Solid Oxide Fuel Cells</title><author>Sacanell, Joaquín ; Hernández Sánchez, Joaquín ; Rubio López, Adrián Ezequiel ; Martinelli, Hernán ; Siepe, Jimena ; Leyva, Ana G ; Ferrari, Valeria ; Juan, Dilson ; Pruneda, Miguel ; Mejía Gómez, Augusto ; Lamas, Diego G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a192t-4c0030f0267bd9594286f65270deb0cc8635d09a5edf85610d529b9af19666143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sacanell, Joaquín</creatorcontrib><creatorcontrib>Hernández Sánchez, Joaquín</creatorcontrib><creatorcontrib>Rubio López, Adrián Ezequiel</creatorcontrib><creatorcontrib>Martinelli, Hernán</creatorcontrib><creatorcontrib>Siepe, Jimena</creatorcontrib><creatorcontrib>Leyva, Ana G</creatorcontrib><creatorcontrib>Ferrari, Valeria</creatorcontrib><creatorcontrib>Juan, Dilson</creatorcontrib><creatorcontrib>Pruneda, Miguel</creatorcontrib><creatorcontrib>Mejía Gómez, Augusto</creatorcontrib><creatorcontrib>Lamas, Diego G</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sacanell, Joaquín</au><au>Hernández Sánchez, Joaquín</au><au>Rubio López, Adrián Ezequiel</au><au>Martinelli, Hernán</au><au>Siepe, Jimena</au><au>Leyva, Ana G</au><au>Ferrari, Valeria</au><au>Juan, Dilson</au><au>Pruneda, Miguel</au><au>Mejía Gómez, Augusto</au><au>Lamas, Diego G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen Reduction Mechanisms in Nanostructured La0.8Sr0.2MnO3 Cathodes for Solid Oxide Fuel Cells</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2017-03-30</date><risdate>2017</risdate><volume>121</volume><issue>12</issue><spage>6533</spage><epage>6539</epage><pages>6533-6539</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>In this work we outline the mechanisms contributing to the oxygen reduction reaction in nanostructured cathodes of La0.8Sr0.2MnO3 (LSM) for Solid Oxide Fuel Cells (SOFC). These cathodes, developed from LSM nanostructured tubes, can be used at lower temperatures compared to microstructured ones, and this is a crucial fact to avoid the degradation of the fuel cell components. This reduction of the operating temperatures stems mainly from two factors: (i) the appearance of significant oxide ion diffusion through the cathode material in which the nanostructure plays a key role and (ii) an optimized gas phase diffusion of oxygen through the porous structure of the cathode, which becomes negligible. A detailed analysis of our Electrochemical Impedance Spectroscopy supported by first-principles calculations point toward an improved overall cathodic performance driven by a fast transport of oxide ions through the cathode surface.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.7b00627</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8209-8106</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2017-03, Vol.121 (12), p.6533-6539
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_7b00627
source ACS Publications
title Oxygen Reduction Mechanisms in Nanostructured La0.8Sr0.2MnO3 Cathodes for Solid Oxide Fuel Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T10%3A56%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20Reduction%20Mechanisms%20in%20Nanostructured%20La0.8Sr0.2MnO3%20Cathodes%20for%20Solid%20Oxide%20Fuel%20Cells&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Sacanell,%20Joaqui%CC%81n&rft.date=2017-03-30&rft.volume=121&rft.issue=12&rft.spage=6533&rft.epage=6539&rft.pages=6533-6539&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.7b00627&rft_dat=%3Cacs%3Ec64582250%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true