Optimizing the Activity of Nanoneedle Structured WO3 Photoanodes for Solar Water Splitting: Direct Synthesis via Chemical Vapor Deposition

Solar water splitting is a promising solution for the renewable production of hydrogen as an energy vector. To date, complex or patterned photoelectrodes have shown the highest water splitting efficiencies, but lack scalable routes for commercial scale-up. In this article, we report a direct and sca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2017-03, Vol.121 (11), p.5983-5993
Hauptverfasser: Kafizas, Andreas, Francàs, Laia, Sotelo-Vazquez, Carlos, Ling, Min, Li, Yaomin, Glover, Emily, McCafferty, Liam, Blackman, Chris, Darr, Jawwad, Parkin, Ivan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5993
container_issue 11
container_start_page 5983
container_title Journal of physical chemistry. C
container_volume 121
creator Kafizas, Andreas
Francàs, Laia
Sotelo-Vazquez, Carlos
Ling, Min
Li, Yaomin
Glover, Emily
McCafferty, Liam
Blackman, Chris
Darr, Jawwad
Parkin, Ivan
description Solar water splitting is a promising solution for the renewable production of hydrogen as an energy vector. To date, complex or patterned photoelectrodes have shown the highest water splitting efficiencies, but lack scalable routes for commercial scale-up. In this article, we report a direct and scalable chemical vapor deposition (CVD) route at atmospheric pressure, for a single step fabrication of complex nanoneedle structured WO3 photoanodes. Using a systematic approach, the nanostructure was engineered to find the conditions that result in optimal water splitting. The nanostructured materials adopted a monoclinic γ-WO3 structure and were highly oriented in the (002) plane, with the nanoneedle structures stacking perpendicular to the FTO substrate. The WO3 photoanode that showed the highest water splitting activity was composed of a ∼300 nm seed layer of flat WO3 with a ∼5 μm thick top layer of WO3 nanoneedles. At 1.23 VRHE, this material showed incident photon-to-current efficiencies in the range ∼35–45% in the UV region (250–375 nm) and an overall solar predicted photocurrent of 1.24 mA·cm–2 (∼25% of the theoretical maximum for WO3). When coupled in tandem with a photovoltaic device containing a methylammonium lead iodide perovskite, a solar-to-hydrogen efficiency of ca. 1% for a complete unassisted water splitting device is predicted.
doi_str_mv 10.1021/acs.jpcc.7b00533
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_7b00533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a978718261</sourcerecordid><originalsourceid>FETCH-LOGICAL-a267t-3c982221a6611e01e7e2110a7dd2273206a1c26d42ef2914e86f2ca066d6fdc83</originalsourceid><addsrcrecordid>eNo9kNtOAjEQhhujiYjeezkP4GIPSwveERA1IWKCyuWmtrNSsmw320KCj-BTW5R4NX_m8E3yEXLNaI9Rzm61Cb11Y0xPfVDaF-KEdNhQ8Ezl_f7pf87VObkIYX1YoUx0yPe8iW7jvlz9CXGFMDLR7Vzcgy_hWde-RrQVwiK2WxO3LVpYzgW8rHz0aWoxQOlbWPhKt7DUEVNuKhdj4t3BxLVoIiz2dUIHF2DnNIxXuHFGV_Cum3Q6wcYHF52vL8lZqauAV8faJW_T-9fxYzabPzyNR7NMc6liJsxwwDlnWkrGkDJUyBmjWlnLuRKcSs0MlzbnWPIhy3EgS240ldLK0pqB6JKbP25SVqz9tq3Tt4LR4uCx-G0mj8XRo_gBtqxqAA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimizing the Activity of Nanoneedle Structured WO3 Photoanodes for Solar Water Splitting: Direct Synthesis via Chemical Vapor Deposition</title><source>American Chemical Society Journals</source><creator>Kafizas, Andreas ; Francàs, Laia ; Sotelo-Vazquez, Carlos ; Ling, Min ; Li, Yaomin ; Glover, Emily ; McCafferty, Liam ; Blackman, Chris ; Darr, Jawwad ; Parkin, Ivan</creator><creatorcontrib>Kafizas, Andreas ; Francàs, Laia ; Sotelo-Vazquez, Carlos ; Ling, Min ; Li, Yaomin ; Glover, Emily ; McCafferty, Liam ; Blackman, Chris ; Darr, Jawwad ; Parkin, Ivan</creatorcontrib><description>Solar water splitting is a promising solution for the renewable production of hydrogen as an energy vector. To date, complex or patterned photoelectrodes have shown the highest water splitting efficiencies, but lack scalable routes for commercial scale-up. In this article, we report a direct and scalable chemical vapor deposition (CVD) route at atmospheric pressure, for a single step fabrication of complex nanoneedle structured WO3 photoanodes. Using a systematic approach, the nanostructure was engineered to find the conditions that result in optimal water splitting. The nanostructured materials adopted a monoclinic γ-WO3 structure and were highly oriented in the (002) plane, with the nanoneedle structures stacking perpendicular to the FTO substrate. The WO3 photoanode that showed the highest water splitting activity was composed of a ∼300 nm seed layer of flat WO3 with a ∼5 μm thick top layer of WO3 nanoneedles. At 1.23 VRHE, this material showed incident photon-to-current efficiencies in the range ∼35–45% in the UV region (250–375 nm) and an overall solar predicted photocurrent of 1.24 mA·cm–2 (∼25% of the theoretical maximum for WO3). When coupled in tandem with a photovoltaic device containing a methylammonium lead iodide perovskite, a solar-to-hydrogen efficiency of ca. 1% for a complete unassisted water splitting device is predicted.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.7b00533</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2017-03, Vol.121 (11), p.5983-5993</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2282-4639 ; 0000-0003-3462-5191 ; 0000-0002-7950-8602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.7b00533$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.7b00533$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Kafizas, Andreas</creatorcontrib><creatorcontrib>Francàs, Laia</creatorcontrib><creatorcontrib>Sotelo-Vazquez, Carlos</creatorcontrib><creatorcontrib>Ling, Min</creatorcontrib><creatorcontrib>Li, Yaomin</creatorcontrib><creatorcontrib>Glover, Emily</creatorcontrib><creatorcontrib>McCafferty, Liam</creatorcontrib><creatorcontrib>Blackman, Chris</creatorcontrib><creatorcontrib>Darr, Jawwad</creatorcontrib><creatorcontrib>Parkin, Ivan</creatorcontrib><title>Optimizing the Activity of Nanoneedle Structured WO3 Photoanodes for Solar Water Splitting: Direct Synthesis via Chemical Vapor Deposition</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Solar water splitting is a promising solution for the renewable production of hydrogen as an energy vector. To date, complex or patterned photoelectrodes have shown the highest water splitting efficiencies, but lack scalable routes for commercial scale-up. In this article, we report a direct and scalable chemical vapor deposition (CVD) route at atmospheric pressure, for a single step fabrication of complex nanoneedle structured WO3 photoanodes. Using a systematic approach, the nanostructure was engineered to find the conditions that result in optimal water splitting. The nanostructured materials adopted a monoclinic γ-WO3 structure and were highly oriented in the (002) plane, with the nanoneedle structures stacking perpendicular to the FTO substrate. The WO3 photoanode that showed the highest water splitting activity was composed of a ∼300 nm seed layer of flat WO3 with a ∼5 μm thick top layer of WO3 nanoneedles. At 1.23 VRHE, this material showed incident photon-to-current efficiencies in the range ∼35–45% in the UV region (250–375 nm) and an overall solar predicted photocurrent of 1.24 mA·cm–2 (∼25% of the theoretical maximum for WO3). When coupled in tandem with a photovoltaic device containing a methylammonium lead iodide perovskite, a solar-to-hydrogen efficiency of ca. 1% for a complete unassisted water splitting device is predicted.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kNtOAjEQhhujiYjeezkP4GIPSwveERA1IWKCyuWmtrNSsmw320KCj-BTW5R4NX_m8E3yEXLNaI9Rzm61Cb11Y0xPfVDaF-KEdNhQ8Ezl_f7pf87VObkIYX1YoUx0yPe8iW7jvlz9CXGFMDLR7Vzcgy_hWde-RrQVwiK2WxO3LVpYzgW8rHz0aWoxQOlbWPhKt7DUEVNuKhdj4t3BxLVoIiz2dUIHF2DnNIxXuHFGV_Cum3Q6wcYHF52vL8lZqauAV8faJW_T-9fxYzabPzyNR7NMc6liJsxwwDlnWkrGkDJUyBmjWlnLuRKcSs0MlzbnWPIhy3EgS240ldLK0pqB6JKbP25SVqz9tq3Tt4LR4uCx-G0mj8XRo_gBtqxqAA</recordid><startdate>20170323</startdate><enddate>20170323</enddate><creator>Kafizas, Andreas</creator><creator>Francàs, Laia</creator><creator>Sotelo-Vazquez, Carlos</creator><creator>Ling, Min</creator><creator>Li, Yaomin</creator><creator>Glover, Emily</creator><creator>McCafferty, Liam</creator><creator>Blackman, Chris</creator><creator>Darr, Jawwad</creator><creator>Parkin, Ivan</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-2282-4639</orcidid><orcidid>https://orcid.org/0000-0003-3462-5191</orcidid><orcidid>https://orcid.org/0000-0002-7950-8602</orcidid></search><sort><creationdate>20170323</creationdate><title>Optimizing the Activity of Nanoneedle Structured WO3 Photoanodes for Solar Water Splitting: Direct Synthesis via Chemical Vapor Deposition</title><author>Kafizas, Andreas ; Francàs, Laia ; Sotelo-Vazquez, Carlos ; Ling, Min ; Li, Yaomin ; Glover, Emily ; McCafferty, Liam ; Blackman, Chris ; Darr, Jawwad ; Parkin, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a267t-3c982221a6611e01e7e2110a7dd2273206a1c26d42ef2914e86f2ca066d6fdc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kafizas, Andreas</creatorcontrib><creatorcontrib>Francàs, Laia</creatorcontrib><creatorcontrib>Sotelo-Vazquez, Carlos</creatorcontrib><creatorcontrib>Ling, Min</creatorcontrib><creatorcontrib>Li, Yaomin</creatorcontrib><creatorcontrib>Glover, Emily</creatorcontrib><creatorcontrib>McCafferty, Liam</creatorcontrib><creatorcontrib>Blackman, Chris</creatorcontrib><creatorcontrib>Darr, Jawwad</creatorcontrib><creatorcontrib>Parkin, Ivan</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kafizas, Andreas</au><au>Francàs, Laia</au><au>Sotelo-Vazquez, Carlos</au><au>Ling, Min</au><au>Li, Yaomin</au><au>Glover, Emily</au><au>McCafferty, Liam</au><au>Blackman, Chris</au><au>Darr, Jawwad</au><au>Parkin, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing the Activity of Nanoneedle Structured WO3 Photoanodes for Solar Water Splitting: Direct Synthesis via Chemical Vapor Deposition</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2017-03-23</date><risdate>2017</risdate><volume>121</volume><issue>11</issue><spage>5983</spage><epage>5993</epage><pages>5983-5993</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Solar water splitting is a promising solution for the renewable production of hydrogen as an energy vector. To date, complex or patterned photoelectrodes have shown the highest water splitting efficiencies, but lack scalable routes for commercial scale-up. In this article, we report a direct and scalable chemical vapor deposition (CVD) route at atmospheric pressure, for a single step fabrication of complex nanoneedle structured WO3 photoanodes. Using a systematic approach, the nanostructure was engineered to find the conditions that result in optimal water splitting. The nanostructured materials adopted a monoclinic γ-WO3 structure and were highly oriented in the (002) plane, with the nanoneedle structures stacking perpendicular to the FTO substrate. The WO3 photoanode that showed the highest water splitting activity was composed of a ∼300 nm seed layer of flat WO3 with a ∼5 μm thick top layer of WO3 nanoneedles. At 1.23 VRHE, this material showed incident photon-to-current efficiencies in the range ∼35–45% in the UV region (250–375 nm) and an overall solar predicted photocurrent of 1.24 mA·cm–2 (∼25% of the theoretical maximum for WO3). When coupled in tandem with a photovoltaic device containing a methylammonium lead iodide perovskite, a solar-to-hydrogen efficiency of ca. 1% for a complete unassisted water splitting device is predicted.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.7b00533</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2282-4639</orcidid><orcidid>https://orcid.org/0000-0003-3462-5191</orcidid><orcidid>https://orcid.org/0000-0002-7950-8602</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2017-03, Vol.121 (11), p.5983-5993
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_7b00533
source American Chemical Society Journals
title Optimizing the Activity of Nanoneedle Structured WO3 Photoanodes for Solar Water Splitting: Direct Synthesis via Chemical Vapor Deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A04%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20the%20Activity%20of%20Nanoneedle%20Structured%20WO3%20Photoanodes%20for%20Solar%20Water%20Splitting:%20Direct%20Synthesis%20via%20Chemical%20Vapor%20Deposition&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Kafizas,%20Andreas&rft.date=2017-03-23&rft.volume=121&rft.issue=11&rft.spage=5983&rft.epage=5993&rft.pages=5983-5993&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.7b00533&rft_dat=%3Cacs%3Ea978718261%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true