Two-Dimensional MnO2 as a Better Cathode Material for Lithium Ion Batteries

On the basis of first-principles calculations, we have systematically studied the adsorption and diffusion of Li ions on monolayer MnO2 and compared with other transition metal dichalcogenides (TMDs) and transition metal dioxides (TMOs). Monolayer MnO2 shows a relatively high Li adsorption energy of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2015-12, Vol.119 (52), p.28783-28788
Hauptverfasser: Deng, Shuo, Wang, Lu, Hou, Tingjun, Li, Youyong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28788
container_issue 52
container_start_page 28783
container_title Journal of physical chemistry. C
container_volume 119
creator Deng, Shuo
Wang, Lu
Hou, Tingjun
Li, Youyong
description On the basis of first-principles calculations, we have systematically studied the adsorption and diffusion of Li ions on monolayer MnO2 and compared with other transition metal dichalcogenides (TMDs) and transition metal dioxides (TMOs). Monolayer MnO2 shows a relatively high Li adsorption energy of 4.37 eV and low Li diffusion barrier of 0.148 eV. The electronic analysis indicates that the electron transferred from Li to the empty orbital of the O atom and there is some orbital coupling between the s orbital of the Li atom and the p z orbital of the O atom in MnO2. Due to Li adsorption on both sides of the MnO2 layer, the theoretical Li storage capacity reaches as high as 616 mAh/g. Our results demonstrated that, compared to other two-dimensional (2D) nanomaterials, monolayer or few-layer MnO2 exhibits excellent performance on Li storage capacity and diffusion rate and is believed to be a promising electrode material for high-capacity Li ion batteries.
doi_str_mv 10.1021/acs.jpcc.5b10354
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_5b10354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a605910680</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-6f96dce97f1f7a5b72d02adc14c6b04c2aae38fc960eaaa2a6fc105ee9a98f4d3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqVw5-gfQIKfSX2k4VWRqpdyjjbOWnXUxih2xd8nhYrT7IxGq92PkHvOcs4EfwQb8_7L2ly3nEmtLsiMGymyUml9-T-r8prcxNgzpiXjckY-tt8he_YHHKIPA-zpetgICpECXWJKONIK0i50SNcwOT81XBhp7dPOHw90FQa6hFPPY7wlVw72Ee_OOiefry_b6j2rN2-r6qnOQBidssKZorNoSsddCbotRccEdJYrW7RMWQGAcuGsKRgCgIDCWc40ogGzcKqTc_Lwt3f6uenDcZzujg1nzQlE8xtOIJozCPkDnV9TkA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Two-Dimensional MnO2 as a Better Cathode Material for Lithium Ion Batteries</title><source>ACS Publications</source><creator>Deng, Shuo ; Wang, Lu ; Hou, Tingjun ; Li, Youyong</creator><creatorcontrib>Deng, Shuo ; Wang, Lu ; Hou, Tingjun ; Li, Youyong</creatorcontrib><description>On the basis of first-principles calculations, we have systematically studied the adsorption and diffusion of Li ions on monolayer MnO2 and compared with other transition metal dichalcogenides (TMDs) and transition metal dioxides (TMOs). Monolayer MnO2 shows a relatively high Li adsorption energy of 4.37 eV and low Li diffusion barrier of 0.148 eV. The electronic analysis indicates that the electron transferred from Li to the empty orbital of the O atom and there is some orbital coupling between the s orbital of the Li atom and the p z orbital of the O atom in MnO2. Due to Li adsorption on both sides of the MnO2 layer, the theoretical Li storage capacity reaches as high as 616 mAh/g. Our results demonstrated that, compared to other two-dimensional (2D) nanomaterials, monolayer or few-layer MnO2 exhibits excellent performance on Li storage capacity and diffusion rate and is believed to be a promising electrode material for high-capacity Li ion batteries.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.5b10354</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2015-12, Vol.119 (52), p.28783-28788</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5b10354$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.5b10354$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Deng, Shuo</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Hou, Tingjun</creatorcontrib><creatorcontrib>Li, Youyong</creatorcontrib><title>Two-Dimensional MnO2 as a Better Cathode Material for Lithium Ion Batteries</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>On the basis of first-principles calculations, we have systematically studied the adsorption and diffusion of Li ions on monolayer MnO2 and compared with other transition metal dichalcogenides (TMDs) and transition metal dioxides (TMOs). Monolayer MnO2 shows a relatively high Li adsorption energy of 4.37 eV and low Li diffusion barrier of 0.148 eV. The electronic analysis indicates that the electron transferred from Li to the empty orbital of the O atom and there is some orbital coupling between the s orbital of the Li atom and the p z orbital of the O atom in MnO2. Due to Li adsorption on both sides of the MnO2 layer, the theoretical Li storage capacity reaches as high as 616 mAh/g. Our results demonstrated that, compared to other two-dimensional (2D) nanomaterials, monolayer or few-layer MnO2 exhibits excellent performance on Li storage capacity and diffusion rate and is believed to be a promising electrode material for high-capacity Li ion batteries.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kEtPwzAQhC0EEqVw5-gfQIKfSX2k4VWRqpdyjjbOWnXUxih2xd8nhYrT7IxGq92PkHvOcs4EfwQb8_7L2ly3nEmtLsiMGymyUml9-T-r8prcxNgzpiXjckY-tt8he_YHHKIPA-zpetgICpECXWJKONIK0i50SNcwOT81XBhp7dPOHw90FQa6hFPPY7wlVw72Ee_OOiefry_b6j2rN2-r6qnOQBidssKZorNoSsddCbotRccEdJYrW7RMWQGAcuGsKRgCgIDCWc40ogGzcKqTc_Lwt3f6uenDcZzujg1nzQlE8xtOIJozCPkDnV9TkA</recordid><startdate>20151231</startdate><enddate>20151231</enddate><creator>Deng, Shuo</creator><creator>Wang, Lu</creator><creator>Hou, Tingjun</creator><creator>Li, Youyong</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20151231</creationdate><title>Two-Dimensional MnO2 as a Better Cathode Material for Lithium Ion Batteries</title><author>Deng, Shuo ; Wang, Lu ; Hou, Tingjun ; Li, Youyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-6f96dce97f1f7a5b72d02adc14c6b04c2aae38fc960eaaa2a6fc105ee9a98f4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Shuo</creatorcontrib><creatorcontrib>Wang, Lu</creatorcontrib><creatorcontrib>Hou, Tingjun</creatorcontrib><creatorcontrib>Li, Youyong</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Shuo</au><au>Wang, Lu</au><au>Hou, Tingjun</au><au>Li, Youyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Dimensional MnO2 as a Better Cathode Material for Lithium Ion Batteries</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2015-12-31</date><risdate>2015</risdate><volume>119</volume><issue>52</issue><spage>28783</spage><epage>28788</epage><pages>28783-28788</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>On the basis of first-principles calculations, we have systematically studied the adsorption and diffusion of Li ions on monolayer MnO2 and compared with other transition metal dichalcogenides (TMDs) and transition metal dioxides (TMOs). Monolayer MnO2 shows a relatively high Li adsorption energy of 4.37 eV and low Li diffusion barrier of 0.148 eV. The electronic analysis indicates that the electron transferred from Li to the empty orbital of the O atom and there is some orbital coupling between the s orbital of the Li atom and the p z orbital of the O atom in MnO2. Due to Li adsorption on both sides of the MnO2 layer, the theoretical Li storage capacity reaches as high as 616 mAh/g. Our results demonstrated that, compared to other two-dimensional (2D) nanomaterials, monolayer or few-layer MnO2 exhibits excellent performance on Li storage capacity and diffusion rate and is believed to be a promising electrode material for high-capacity Li ion batteries.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.5b10354</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2015-12, Vol.119 (52), p.28783-28788
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_5b10354
source ACS Publications
title Two-Dimensional MnO2 as a Better Cathode Material for Lithium Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Dimensional%20MnO2%20as%20a%20Better%20Cathode%20Material%20for%20Lithium%20Ion%20Batteries&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Deng,%20Shuo&rft.date=2015-12-31&rft.volume=119&rft.issue=52&rft.spage=28783&rft.epage=28788&rft.pages=28783-28788&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.5b10354&rft_dat=%3Cacs%3Ea605910680%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true