Effect of Nitrogen Doping on the CO2 Adsorption Behavior in Nanoporous Carbon Structures: A Molecular Simulation Study

Nitrogen (N) doping is considered an effective design strategy to improve CO2 adsorption in carbon materials. However, experimental quantification of such an effect is riddled with difficulties, due to the practical complexity involved in experiments to control more than one parameter, especially at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2015-10, Vol.119 (39), p.22310-22321
Hauptverfasser: Kumar, K. Vasanth, Preuss, Kathrin, Lu, Linghong, Guo, Zheng Xiao, Titirici, M. Magdalena
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22321
container_issue 39
container_start_page 22310
container_title Journal of physical chemistry. C
container_volume 119
creator Kumar, K. Vasanth
Preuss, Kathrin
Lu, Linghong
Guo, Zheng Xiao
Titirici, M. Magdalena
description Nitrogen (N) doping is considered an effective design strategy to improve CO2 adsorption in carbon materials. However, experimental quantification of such an effect is riddled with difficulties, due to the practical complexity involved in experiments to control more than one parameter, especially at the nanoscale level. Here, we use molecular simulations to clarify the role of N doping on the CO2 uptake and the CO2/N2 selectivity in representative carbon pore architectures (slit and disordered carbon structures) at 298 K. Our results indicate that N doping shows a marginal improvement on the CO2 uptake, although it can improve the CO2/N2 selectivity. CO2 uptake and CO2/N2 selectivity are predominantly controlled by the pore architecture as well as ultra-micropores; the tendency of linear CO2 molecules to lie flat on the carbon surface favors the CO2 uptake in slit pore architectures rather than disordered carbon pore structures. We also demonstrated through molecular simulations that the N doping effect may be difficult to exemplify experimentally if the material has a disordered pore architecture and complex surface chemistry (such as the presence of other functional groups).
doi_str_mv 10.1021/acs.jpcc.5b06017
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_5b06017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b53179465</sourcerecordid><originalsourceid>FETCH-LOGICAL-a258t-98bf9b0dde4e665bf57989f3f765c7b2dae7971448293573a70b0f328cec04c23</originalsourceid><addsrcrecordid>eNo9kDtPwzAAhC0EEqWwM_oHkOJHHMdsIZSHVNohMEe2Y7epQhzZTiX-PaFUTHe6k-6kD4BbjBYYEXwvdVjsB60XTKEMYX4GZlhQkvCUsfN_n_JLcBXCHiFGEaYzcFhaa3SEzsJ1G73bmh4-uaHtt9D1MO4MLDcEFk1wfojtFD2anTy0zsO2h2vZu8F5NwZYSq-mtop-1HH0JjzAAr67zuixkx5W7dekx4Eqjs33Nbiwsgvm5qRz8Pm8_Chfk9Xm5a0sVokkLI-JyJUVCjWNSU2WMWUZF7mw1PKMaa5IIw0XHKdpTgRlnEqOFLKU5NpolGpC5-Dub3fCU-_d6Pvprcao_mVWH8OJWX1iRn8AE3Zibw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of Nitrogen Doping on the CO2 Adsorption Behavior in Nanoporous Carbon Structures: A Molecular Simulation Study</title><source>American Chemical Society Journals</source><creator>Kumar, K. Vasanth ; Preuss, Kathrin ; Lu, Linghong ; Guo, Zheng Xiao ; Titirici, M. Magdalena</creator><creatorcontrib>Kumar, K. Vasanth ; Preuss, Kathrin ; Lu, Linghong ; Guo, Zheng Xiao ; Titirici, M. Magdalena</creatorcontrib><description>Nitrogen (N) doping is considered an effective design strategy to improve CO2 adsorption in carbon materials. However, experimental quantification of such an effect is riddled with difficulties, due to the practical complexity involved in experiments to control more than one parameter, especially at the nanoscale level. Here, we use molecular simulations to clarify the role of N doping on the CO2 uptake and the CO2/N2 selectivity in representative carbon pore architectures (slit and disordered carbon structures) at 298 K. Our results indicate that N doping shows a marginal improvement on the CO2 uptake, although it can improve the CO2/N2 selectivity. CO2 uptake and CO2/N2 selectivity are predominantly controlled by the pore architecture as well as ultra-micropores; the tendency of linear CO2 molecules to lie flat on the carbon surface favors the CO2 uptake in slit pore architectures rather than disordered carbon pore structures. We also demonstrated through molecular simulations that the N doping effect may be difficult to exemplify experimentally if the material has a disordered pore architecture and complex surface chemistry (such as the presence of other functional groups).</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.5b06017</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2015-10, Vol.119 (39), p.22310-22321</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5b06017$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.5b06017$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56717,56767</link.rule.ids></links><search><creatorcontrib>Kumar, K. Vasanth</creatorcontrib><creatorcontrib>Preuss, Kathrin</creatorcontrib><creatorcontrib>Lu, Linghong</creatorcontrib><creatorcontrib>Guo, Zheng Xiao</creatorcontrib><creatorcontrib>Titirici, M. Magdalena</creatorcontrib><title>Effect of Nitrogen Doping on the CO2 Adsorption Behavior in Nanoporous Carbon Structures: A Molecular Simulation Study</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Nitrogen (N) doping is considered an effective design strategy to improve CO2 adsorption in carbon materials. However, experimental quantification of such an effect is riddled with difficulties, due to the practical complexity involved in experiments to control more than one parameter, especially at the nanoscale level. Here, we use molecular simulations to clarify the role of N doping on the CO2 uptake and the CO2/N2 selectivity in representative carbon pore architectures (slit and disordered carbon structures) at 298 K. Our results indicate that N doping shows a marginal improvement on the CO2 uptake, although it can improve the CO2/N2 selectivity. CO2 uptake and CO2/N2 selectivity are predominantly controlled by the pore architecture as well as ultra-micropores; the tendency of linear CO2 molecules to lie flat on the carbon surface favors the CO2 uptake in slit pore architectures rather than disordered carbon pore structures. We also demonstrated through molecular simulations that the N doping effect may be difficult to exemplify experimentally if the material has a disordered pore architecture and complex surface chemistry (such as the presence of other functional groups).</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kDtPwzAAhC0EEqWwM_oHkOJHHMdsIZSHVNohMEe2Y7epQhzZTiX-PaFUTHe6k-6kD4BbjBYYEXwvdVjsB60XTKEMYX4GZlhQkvCUsfN_n_JLcBXCHiFGEaYzcFhaa3SEzsJ1G73bmh4-uaHtt9D1MO4MLDcEFk1wfojtFD2anTy0zsO2h2vZu8F5NwZYSq-mtop-1HH0JjzAAr67zuixkx5W7dekx4Eqjs33Nbiwsgvm5qRz8Pm8_Chfk9Xm5a0sVokkLI-JyJUVCjWNSU2WMWUZF7mw1PKMaa5IIw0XHKdpTgRlnEqOFLKU5NpolGpC5-Dub3fCU-_d6Pvprcao_mVWH8OJWX1iRn8AE3Zibw</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Kumar, K. Vasanth</creator><creator>Preuss, Kathrin</creator><creator>Lu, Linghong</creator><creator>Guo, Zheng Xiao</creator><creator>Titirici, M. Magdalena</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20151001</creationdate><title>Effect of Nitrogen Doping on the CO2 Adsorption Behavior in Nanoporous Carbon Structures: A Molecular Simulation Study</title><author>Kumar, K. Vasanth ; Preuss, Kathrin ; Lu, Linghong ; Guo, Zheng Xiao ; Titirici, M. Magdalena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a258t-98bf9b0dde4e665bf57989f3f765c7b2dae7971448293573a70b0f328cec04c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, K. Vasanth</creatorcontrib><creatorcontrib>Preuss, Kathrin</creatorcontrib><creatorcontrib>Lu, Linghong</creatorcontrib><creatorcontrib>Guo, Zheng Xiao</creatorcontrib><creatorcontrib>Titirici, M. Magdalena</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, K. Vasanth</au><au>Preuss, Kathrin</au><au>Lu, Linghong</au><au>Guo, Zheng Xiao</au><au>Titirici, M. Magdalena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Nitrogen Doping on the CO2 Adsorption Behavior in Nanoporous Carbon Structures: A Molecular Simulation Study</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>119</volume><issue>39</issue><spage>22310</spage><epage>22321</epage><pages>22310-22321</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Nitrogen (N) doping is considered an effective design strategy to improve CO2 adsorption in carbon materials. However, experimental quantification of such an effect is riddled with difficulties, due to the practical complexity involved in experiments to control more than one parameter, especially at the nanoscale level. Here, we use molecular simulations to clarify the role of N doping on the CO2 uptake and the CO2/N2 selectivity in representative carbon pore architectures (slit and disordered carbon structures) at 298 K. Our results indicate that N doping shows a marginal improvement on the CO2 uptake, although it can improve the CO2/N2 selectivity. CO2 uptake and CO2/N2 selectivity are predominantly controlled by the pore architecture as well as ultra-micropores; the tendency of linear CO2 molecules to lie flat on the carbon surface favors the CO2 uptake in slit pore architectures rather than disordered carbon pore structures. We also demonstrated through molecular simulations that the N doping effect may be difficult to exemplify experimentally if the material has a disordered pore architecture and complex surface chemistry (such as the presence of other functional groups).</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.5b06017</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2015-10, Vol.119 (39), p.22310-22321
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_5b06017
source American Chemical Society Journals
title Effect of Nitrogen Doping on the CO2 Adsorption Behavior in Nanoporous Carbon Structures: A Molecular Simulation Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A52%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Nitrogen%20Doping%20on%20the%20CO2%20Adsorption%20Behavior%20in%20Nanoporous%20Carbon%20Structures:%20A%20Molecular%20Simulation%20Study&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Kumar,%20K.%20Vasanth&rft.date=2015-10-01&rft.volume=119&rft.issue=39&rft.spage=22310&rft.epage=22321&rft.pages=22310-22321&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.5b06017&rft_dat=%3Cacs%3Eb53179465%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true