Identifying the Active Oxygen Species in SnO2 Based Gas Sensing Materials: An Operando IR Spectrsocopy Study

This work demonstrates that it is possible to follow the surface chemistry of oxygen on SnO2 based gas sensing materials using operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The inherent difficulties, due to the intrinsic properties of the studied oxide and the limita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2015-05
Hauptverfasser: Degler, David, Wicker, Susanne, Weimar, Udo, Barsan, Nicolae
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of physical chemistry. C
container_volume
creator Degler, David
Wicker, Susanne
Weimar, Udo
Barsan, Nicolae
description This work demonstrates that it is possible to follow the surface chemistry of oxygen on SnO2 based gas sensing materials using operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The inherent difficulties, due to the intrinsic properties of the studied oxide and the limitations of the method, were overcome by comparing the results obtained for two different materials and by use of isotopically labeled gases together with the simultaneous measurement of the sensor signals. In spite of the differences in the surface composition and reactivity between the different materials, the experimental results show that the reactive oxygen species are similar in nature and the gas recognition takes place by the interplay of surface reduction and (re)­oxidation.
doi_str_mv 10.1021/acs.jpcc.5b04082
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_5b04082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a411112031</sourcerecordid><originalsourceid>FETCH-LOGICAL-a295t-2a3bb874db9ebffbc7c007108c00b898eff30f850f5b6818430c8b6cf3ea0c8f3</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKf3XuYB7DxpmjX1bg43B5OC0-uSpCezY6SlycS-vdkcXv0fh_OfAx8h9wwmDFL2qIyf7DpjJkJDBjK9ICNW8DTJMyEu_znLr8mN9zsAwYHxEdmvanShsUPjtjR8IZ2Z0HwjLX-GLTq66dA06GkT0ZUpfVYea7pUnm7Q-WPnTQXsG7X3T3TmaNlhr1zd0tX7qRt635q2G-gmHOrhllzZuIl35xyTz8XLx_w1WZfL1Xy2TlRaiJCkimst86zWBWprtckNQM5AxtCykGgtBysFWKGnksmMg5F6aixHFcnyMXn4uxulVLv20Lv4rWJQHU1Vp2E0VZ1N8V-Pl17f</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identifying the Active Oxygen Species in SnO2 Based Gas Sensing Materials: An Operando IR Spectrsocopy Study</title><source>ACS Publications</source><creator>Degler, David ; Wicker, Susanne ; Weimar, Udo ; Barsan, Nicolae</creator><creatorcontrib>Degler, David ; Wicker, Susanne ; Weimar, Udo ; Barsan, Nicolae</creatorcontrib><description>This work demonstrates that it is possible to follow the surface chemistry of oxygen on SnO2 based gas sensing materials using operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The inherent difficulties, due to the intrinsic properties of the studied oxide and the limitations of the method, were overcome by comparing the results obtained for two different materials and by use of isotopically labeled gases together with the simultaneous measurement of the sensor signals. In spite of the differences in the surface composition and reactivity between the different materials, the experimental results show that the reactive oxygen species are similar in nature and the gas recognition takes place by the interplay of surface reduction and (re)­oxidation.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.5b04082</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2015-05</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5b04082$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.5b04082$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,27059,27907,27908,56721,56771</link.rule.ids></links><search><creatorcontrib>Degler, David</creatorcontrib><creatorcontrib>Wicker, Susanne</creatorcontrib><creatorcontrib>Weimar, Udo</creatorcontrib><creatorcontrib>Barsan, Nicolae</creatorcontrib><title>Identifying the Active Oxygen Species in SnO2 Based Gas Sensing Materials: An Operando IR Spectrsocopy Study</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>This work demonstrates that it is possible to follow the surface chemistry of oxygen on SnO2 based gas sensing materials using operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The inherent difficulties, due to the intrinsic properties of the studied oxide and the limitations of the method, were overcome by comparing the results obtained for two different materials and by use of isotopically labeled gases together with the simultaneous measurement of the sensor signals. In spite of the differences in the surface composition and reactivity between the different materials, the experimental results show that the reactive oxygen species are similar in nature and the gas recognition takes place by the interplay of surface reduction and (re)­oxidation.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kNFKwzAUhoMoOKf3XuYB7DxpmjX1bg43B5OC0-uSpCezY6SlycS-vdkcXv0fh_OfAx8h9wwmDFL2qIyf7DpjJkJDBjK9ICNW8DTJMyEu_znLr8mN9zsAwYHxEdmvanShsUPjtjR8IZ2Z0HwjLX-GLTq66dA06GkT0ZUpfVYea7pUnm7Q-WPnTQXsG7X3T3TmaNlhr1zd0tX7qRt635q2G-gmHOrhllzZuIl35xyTz8XLx_w1WZfL1Xy2TlRaiJCkimst86zWBWprtckNQM5AxtCykGgtBysFWKGnksmMg5F6aixHFcnyMXn4uxulVLv20Lv4rWJQHU1Vp2E0VZ1N8V-Pl17f</recordid><startdate>20150528</startdate><enddate>20150528</enddate><creator>Degler, David</creator><creator>Wicker, Susanne</creator><creator>Weimar, Udo</creator><creator>Barsan, Nicolae</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20150528</creationdate><title>Identifying the Active Oxygen Species in SnO2 Based Gas Sensing Materials: An Operando IR Spectrsocopy Study</title><author>Degler, David ; Wicker, Susanne ; Weimar, Udo ; Barsan, Nicolae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a295t-2a3bb874db9ebffbc7c007108c00b898eff30f850f5b6818430c8b6cf3ea0c8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Degler, David</creatorcontrib><creatorcontrib>Wicker, Susanne</creatorcontrib><creatorcontrib>Weimar, Udo</creatorcontrib><creatorcontrib>Barsan, Nicolae</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Degler, David</au><au>Wicker, Susanne</au><au>Weimar, Udo</au><au>Barsan, Nicolae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying the Active Oxygen Species in SnO2 Based Gas Sensing Materials: An Operando IR Spectrsocopy Study</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2015-05-28</date><risdate>2015</risdate><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>This work demonstrates that it is possible to follow the surface chemistry of oxygen on SnO2 based gas sensing materials using operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The inherent difficulties, due to the intrinsic properties of the studied oxide and the limitations of the method, were overcome by comparing the results obtained for two different materials and by use of isotopically labeled gases together with the simultaneous measurement of the sensor signals. In spite of the differences in the surface composition and reactivity between the different materials, the experimental results show that the reactive oxygen species are similar in nature and the gas recognition takes place by the interplay of surface reduction and (re)­oxidation.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.5b04082</doi></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2015-05
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_5b04082
source ACS Publications
title Identifying the Active Oxygen Species in SnO2 Based Gas Sensing Materials: An Operando IR Spectrsocopy Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A46%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20the%20Active%20Oxygen%20Species%20in%20SnO2%20Based%20Gas%20Sensing%20Materials:%20An%20Operando%20IR%20Spectrsocopy%20Study&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Degler,%20David&rft.date=2015-05-28&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.5b04082&rft_dat=%3Cacs%3Ea411112031%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true