Controlling Plasmon-Induced Resonance Energy Transfer and Hot Electron Injection Processes in Metal@TiO2 Core–Shell Nanoparticles
Plasmonic metals can excite charge carriers in semiconductors through plasmon-induced resonance energy transfer (PIRET) and hot electron injection processes. Transient absorption spectroscopy reveals that the presence of plasmon-induced charge separation mechanisms in metal@TiO2 core–shell nanoparti...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2015-07, Vol.119 (28), p.16239-16244 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16244 |
---|---|
container_issue | 28 |
container_start_page | 16239 |
container_title | Journal of physical chemistry. C |
container_volume | 119 |
creator | Cushing, Scott K Li, Jiangtian Bright, Joeseph Yost, Brandon T Zheng, Peng Bristow, Alan D Wu, Nianqiang |
description | Plasmonic metals can excite charge carriers in semiconductors through plasmon-induced resonance energy transfer (PIRET) and hot electron injection processes. Transient absorption spectroscopy reveals that the presence of plasmon-induced charge separation mechanisms in metal@TiO2 core–shell nanoparticles can be controlled by tailoring the spectral overlap and the physical contact between the metal and the semiconductor. In Ag@SiO2@TiO2 sandwich nanoparticles, the localized surface plasmon resonance band is overlapped with the absorption band edge of TiO2, enabling PIRET, while the SiO2 barrier prevents hot electron transfer. In Au@TiO2, hot electron injection occurs, but the lack of spectral overlap disables PIRET. In Ag@TiO2, both hot electron transfer and PIRET take place. In Au@SiO2@TiO2, photoconversion in TiO2 is not enhanced by the plasmon despite strong light absorption by Au. |
doi_str_mv | 10.1021/acs.jpcc.5b03955 |
format | Article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_5b03955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c417334915</sourcerecordid><originalsourceid>FETCH-LOGICAL-a258t-c336b9444e297a39d8ec38d82e424bf882fec459d44013525f1f0a491bcbee7d3</originalsourceid><addsrcrecordid>eNo9kE1OwzAQRi0EEqWwZ-kDkOJfEu9AUaGVCq2grCPHnpRExq7sdMEOiSNwQ05CgIrVPI008-l7CJ1TMqGE0Utt0qTbGjORNeFKygM0ooqzLBdSHv6zyI_RSUodIZITykfoowy-j8G51m_wyun0Gnw293ZnwOJHSMFrbwBPPcTNG15H7VMDEWtv8Sz0eOrADOcez303UDvQKgYDKUHCrcf30Gt3vW6XDJchwtf759MLOIcftA9bHfvWOEin6KjRLsHZfo7R8-10Xc6yxfJuXt4sMs1k0WeG86taCSGAqVxzZQswvLAFA8FE3RQFa8AIqawQQzXJZEMbooWitakBcsvH6OLv7-Cq6sIu-iGtoqT6EVj9LgeB1V4g_wY8-Gjp</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlling Plasmon-Induced Resonance Energy Transfer and Hot Electron Injection Processes in Metal@TiO2 Core–Shell Nanoparticles</title><source>ACS Publications</source><creator>Cushing, Scott K ; Li, Jiangtian ; Bright, Joeseph ; Yost, Brandon T ; Zheng, Peng ; Bristow, Alan D ; Wu, Nianqiang</creator><creatorcontrib>Cushing, Scott K ; Li, Jiangtian ; Bright, Joeseph ; Yost, Brandon T ; Zheng, Peng ; Bristow, Alan D ; Wu, Nianqiang</creatorcontrib><description>Plasmonic metals can excite charge carriers in semiconductors through plasmon-induced resonance energy transfer (PIRET) and hot electron injection processes. Transient absorption spectroscopy reveals that the presence of plasmon-induced charge separation mechanisms in metal@TiO2 core–shell nanoparticles can be controlled by tailoring the spectral overlap and the physical contact between the metal and the semiconductor. In Ag@SiO2@TiO2 sandwich nanoparticles, the localized surface plasmon resonance band is overlapped with the absorption band edge of TiO2, enabling PIRET, while the SiO2 barrier prevents hot electron transfer. In Au@TiO2, hot electron injection occurs, but the lack of spectral overlap disables PIRET. In Ag@TiO2, both hot electron transfer and PIRET take place. In Au@SiO2@TiO2, photoconversion in TiO2 is not enhanced by the plasmon despite strong light absorption by Au.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.5b03955</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2015-07, Vol.119 (28), p.16239-16244</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5b03955$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.5b03955$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Cushing, Scott K</creatorcontrib><creatorcontrib>Li, Jiangtian</creatorcontrib><creatorcontrib>Bright, Joeseph</creatorcontrib><creatorcontrib>Yost, Brandon T</creatorcontrib><creatorcontrib>Zheng, Peng</creatorcontrib><creatorcontrib>Bristow, Alan D</creatorcontrib><creatorcontrib>Wu, Nianqiang</creatorcontrib><title>Controlling Plasmon-Induced Resonance Energy Transfer and Hot Electron Injection Processes in Metal@TiO2 Core–Shell Nanoparticles</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Plasmonic metals can excite charge carriers in semiconductors through plasmon-induced resonance energy transfer (PIRET) and hot electron injection processes. Transient absorption spectroscopy reveals that the presence of plasmon-induced charge separation mechanisms in metal@TiO2 core–shell nanoparticles can be controlled by tailoring the spectral overlap and the physical contact between the metal and the semiconductor. In Ag@SiO2@TiO2 sandwich nanoparticles, the localized surface plasmon resonance band is overlapped with the absorption band edge of TiO2, enabling PIRET, while the SiO2 barrier prevents hot electron transfer. In Au@TiO2, hot electron injection occurs, but the lack of spectral overlap disables PIRET. In Ag@TiO2, both hot electron transfer and PIRET take place. In Au@SiO2@TiO2, photoconversion in TiO2 is not enhanced by the plasmon despite strong light absorption by Au.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kE1OwzAQRi0EEqWwZ-kDkOJfEu9AUaGVCq2grCPHnpRExq7sdMEOiSNwQ05CgIrVPI008-l7CJ1TMqGE0Utt0qTbGjORNeFKygM0ooqzLBdSHv6zyI_RSUodIZITykfoowy-j8G51m_wyun0Gnw293ZnwOJHSMFrbwBPPcTNG15H7VMDEWtv8Sz0eOrADOcez303UDvQKgYDKUHCrcf30Gt3vW6XDJchwtf759MLOIcftA9bHfvWOEin6KjRLsHZfo7R8-10Xc6yxfJuXt4sMs1k0WeG86taCSGAqVxzZQswvLAFA8FE3RQFa8AIqawQQzXJZEMbooWitakBcsvH6OLv7-Cq6sIu-iGtoqT6EVj9LgeB1V4g_wY8-Gjp</recordid><startdate>20150716</startdate><enddate>20150716</enddate><creator>Cushing, Scott K</creator><creator>Li, Jiangtian</creator><creator>Bright, Joeseph</creator><creator>Yost, Brandon T</creator><creator>Zheng, Peng</creator><creator>Bristow, Alan D</creator><creator>Wu, Nianqiang</creator><general>American Chemical Society</general><scope/></search><sort><creationdate>20150716</creationdate><title>Controlling Plasmon-Induced Resonance Energy Transfer and Hot Electron Injection Processes in Metal@TiO2 Core–Shell Nanoparticles</title><author>Cushing, Scott K ; Li, Jiangtian ; Bright, Joeseph ; Yost, Brandon T ; Zheng, Peng ; Bristow, Alan D ; Wu, Nianqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a258t-c336b9444e297a39d8ec38d82e424bf882fec459d44013525f1f0a491bcbee7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cushing, Scott K</creatorcontrib><creatorcontrib>Li, Jiangtian</creatorcontrib><creatorcontrib>Bright, Joeseph</creatorcontrib><creatorcontrib>Yost, Brandon T</creatorcontrib><creatorcontrib>Zheng, Peng</creatorcontrib><creatorcontrib>Bristow, Alan D</creatorcontrib><creatorcontrib>Wu, Nianqiang</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cushing, Scott K</au><au>Li, Jiangtian</au><au>Bright, Joeseph</au><au>Yost, Brandon T</au><au>Zheng, Peng</au><au>Bristow, Alan D</au><au>Wu, Nianqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Plasmon-Induced Resonance Energy Transfer and Hot Electron Injection Processes in Metal@TiO2 Core–Shell Nanoparticles</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2015-07-16</date><risdate>2015</risdate><volume>119</volume><issue>28</issue><spage>16239</spage><epage>16244</epage><pages>16239-16244</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Plasmonic metals can excite charge carriers in semiconductors through plasmon-induced resonance energy transfer (PIRET) and hot electron injection processes. Transient absorption spectroscopy reveals that the presence of plasmon-induced charge separation mechanisms in metal@TiO2 core–shell nanoparticles can be controlled by tailoring the spectral overlap and the physical contact between the metal and the semiconductor. In Ag@SiO2@TiO2 sandwich nanoparticles, the localized surface plasmon resonance band is overlapped with the absorption band edge of TiO2, enabling PIRET, while the SiO2 barrier prevents hot electron transfer. In Au@TiO2, hot electron injection occurs, but the lack of spectral overlap disables PIRET. In Ag@TiO2, both hot electron transfer and PIRET take place. In Au@SiO2@TiO2, photoconversion in TiO2 is not enhanced by the plasmon despite strong light absorption by Au.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.5b03955</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2015-07, Vol.119 (28), p.16239-16244 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_acs_journals_10_1021_acs_jpcc_5b03955 |
source | ACS Publications |
title | Controlling Plasmon-Induced Resonance Energy Transfer and Hot Electron Injection Processes in Metal@TiO2 Core–Shell Nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A29%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Plasmon-Induced%20Resonance%20Energy%20Transfer%20and%20Hot%20Electron%20Injection%20Processes%20in%20Metal@TiO2%20Core%E2%80%93Shell%20Nanoparticles&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Cushing,%20Scott%20K&rft.date=2015-07-16&rft.volume=119&rft.issue=28&rft.spage=16239&rft.epage=16244&rft.pages=16239-16244&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.5b03955&rft_dat=%3Cacs%3Ec417334915%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |