High-Throughput Computation and Machine Learning Prediction Accelerating the Design of Cathode Catalysts for Li–CO2 Batteries

Developing new cathode catalysts to facilitate the electrochemical reaction toward the product of lithium oxalate would enhance the performance of Li–CO2 batteries. Herein, high-throughput calculations and machine learning technology were synergistically utilized to effectively screen new transition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2024-07, Vol.128 (28), p.11534-11542
Hauptverfasser: Yao, Tengyu, Xu, Zhenming, Hu, Tingsong, Hu, Kang, Cui, Xueliang, Shen, Laifa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11542
container_issue 28
container_start_page 11534
container_title Journal of physical chemistry. C
container_volume 128
creator Yao, Tengyu
Xu, Zhenming
Hu, Tingsong
Hu, Kang
Cui, Xueliang
Shen, Laifa
description Developing new cathode catalysts to facilitate the electrochemical reaction toward the product of lithium oxalate would enhance the performance of Li–CO2 batteries. Herein, high-throughput calculations and machine learning technology were synergistically utilized to effectively screen new transition metal-based cathode catalysts. Gibbs free energies of CO2 reduction on the surfaces of 11 transition metal compounds were explored by the high-throughput first-principles calculations, and MoN was forecasted to be a promising cathode catalyst material, promoting the reaction product of lithium oxalate and possessing the minimum overpotential. On the other hand, based on the data of first-principles calculations, machine learning models with respect to overpotential were built to evaluate the electrochemical performances of transition metal nitrides. The origin of catalytic activity was revealed to be the adsorption energy by the feature importance analysis of overpotential. Our work not only puts forward a paradigm of the highly effective screening of cathode catalysts for Li–CO2 batteries but also provides a new understanding of the overpotential of CO2 reduction from the perspective of molecule adsorption.
doi_str_mv 10.1021/acs.jpcc.4c02641
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_4c02641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d09312251</sourcerecordid><originalsourceid>FETCH-LOGICAL-a122t-56bf1030d3719652dde1cdf337774d81995b2f3d1f48c0c330674ed905ca8bf83</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqWwZ-kPIMWPOE6WJTyKFFQWZR05fiSuil3Z7oIV_AN_yJeQlorVGd07mpEOANcYzTAi-FbIOFtvpZzlEpEixydggitKMp4zdvo_5_wcXMS4RohRhOkEfC5sP2SrIfhdP2x3Cdb-fYRI1jsonIIvQg7WadhoEZx1PXwNWll56OdS6o0O4_KYp0HDex1t76A3sBZp8ErvKTYfMUVofICN_fn6rpcE3omUdLA6XoIzIzZRXx05BW-PD6t6kTXLp-d63mQCE5IyVnQGI4oU5bgqGFFKY6kMpZzzXJW4qlhHDFXY5KVEklJU8FyrCjEpys6UdApu_u6Ontq13wU3fmsxavfy2kM4ymuP8ugv8xVmgA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Throughput Computation and Machine Learning Prediction Accelerating the Design of Cathode Catalysts for Li–CO2 Batteries</title><source>ACS Journals: American Chemical Society Web Editions</source><creator>Yao, Tengyu ; Xu, Zhenming ; Hu, Tingsong ; Hu, Kang ; Cui, Xueliang ; Shen, Laifa</creator><creatorcontrib>Yao, Tengyu ; Xu, Zhenming ; Hu, Tingsong ; Hu, Kang ; Cui, Xueliang ; Shen, Laifa</creatorcontrib><description>Developing new cathode catalysts to facilitate the electrochemical reaction toward the product of lithium oxalate would enhance the performance of Li–CO2 batteries. Herein, high-throughput calculations and machine learning technology were synergistically utilized to effectively screen new transition metal-based cathode catalysts. Gibbs free energies of CO2 reduction on the surfaces of 11 transition metal compounds were explored by the high-throughput first-principles calculations, and MoN was forecasted to be a promising cathode catalyst material, promoting the reaction product of lithium oxalate and possessing the minimum overpotential. On the other hand, based on the data of first-principles calculations, machine learning models with respect to overpotential were built to evaluate the electrochemical performances of transition metal nitrides. The origin of catalytic activity was revealed to be the adsorption energy by the feature importance analysis of overpotential. Our work not only puts forward a paradigm of the highly effective screening of cathode catalysts for Li–CO2 batteries but also provides a new understanding of the overpotential of CO2 reduction from the perspective of molecule adsorption.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.4c02641</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Energy Conversion and Storage</subject><ispartof>Journal of physical chemistry. C, 2024-07, Vol.128 (28), p.11534-11542</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5114-6446 ; 0000-0002-7039-3845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.4c02641$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.4c02641$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Yao, Tengyu</creatorcontrib><creatorcontrib>Xu, Zhenming</creatorcontrib><creatorcontrib>Hu, Tingsong</creatorcontrib><creatorcontrib>Hu, Kang</creatorcontrib><creatorcontrib>Cui, Xueliang</creatorcontrib><creatorcontrib>Shen, Laifa</creatorcontrib><title>High-Throughput Computation and Machine Learning Prediction Accelerating the Design of Cathode Catalysts for Li–CO2 Batteries</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Developing new cathode catalysts to facilitate the electrochemical reaction toward the product of lithium oxalate would enhance the performance of Li–CO2 batteries. Herein, high-throughput calculations and machine learning technology were synergistically utilized to effectively screen new transition metal-based cathode catalysts. Gibbs free energies of CO2 reduction on the surfaces of 11 transition metal compounds were explored by the high-throughput first-principles calculations, and MoN was forecasted to be a promising cathode catalyst material, promoting the reaction product of lithium oxalate and possessing the minimum overpotential. On the other hand, based on the data of first-principles calculations, machine learning models with respect to overpotential were built to evaluate the electrochemical performances of transition metal nitrides. The origin of catalytic activity was revealed to be the adsorption energy by the feature importance analysis of overpotential. Our work not only puts forward a paradigm of the highly effective screening of cathode catalysts for Li–CO2 batteries but also provides a new understanding of the overpotential of CO2 reduction from the perspective of molecule adsorption.</description><subject>C: Energy Conversion and Storage</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kMtOwzAQRS0EEqWwZ-kPIMWPOE6WJTyKFFQWZR05fiSuil3Z7oIV_AN_yJeQlorVGd07mpEOANcYzTAi-FbIOFtvpZzlEpEixydggitKMp4zdvo_5_wcXMS4RohRhOkEfC5sP2SrIfhdP2x3Cdb-fYRI1jsonIIvQg7WadhoEZx1PXwNWll56OdS6o0O4_KYp0HDex1t76A3sBZp8ErvKTYfMUVofICN_fn6rpcE3omUdLA6XoIzIzZRXx05BW-PD6t6kTXLp-d63mQCE5IyVnQGI4oU5bgqGFFKY6kMpZzzXJW4qlhHDFXY5KVEklJU8FyrCjEpys6UdApu_u6Ontq13wU3fmsxavfy2kM4ymuP8ugv8xVmgA</recordid><startdate>20240718</startdate><enddate>20240718</enddate><creator>Yao, Tengyu</creator><creator>Xu, Zhenming</creator><creator>Hu, Tingsong</creator><creator>Hu, Kang</creator><creator>Cui, Xueliang</creator><creator>Shen, Laifa</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-5114-6446</orcidid><orcidid>https://orcid.org/0000-0002-7039-3845</orcidid></search><sort><creationdate>20240718</creationdate><title>High-Throughput Computation and Machine Learning Prediction Accelerating the Design of Cathode Catalysts for Li–CO2 Batteries</title><author>Yao, Tengyu ; Xu, Zhenming ; Hu, Tingsong ; Hu, Kang ; Cui, Xueliang ; Shen, Laifa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a122t-56bf1030d3719652dde1cdf337774d81995b2f3d1f48c0c330674ed905ca8bf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>C: Energy Conversion and Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Tengyu</creatorcontrib><creatorcontrib>Xu, Zhenming</creatorcontrib><creatorcontrib>Hu, Tingsong</creatorcontrib><creatorcontrib>Hu, Kang</creatorcontrib><creatorcontrib>Cui, Xueliang</creatorcontrib><creatorcontrib>Shen, Laifa</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Tengyu</au><au>Xu, Zhenming</au><au>Hu, Tingsong</au><au>Hu, Kang</au><au>Cui, Xueliang</au><au>Shen, Laifa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Throughput Computation and Machine Learning Prediction Accelerating the Design of Cathode Catalysts for Li–CO2 Batteries</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2024-07-18</date><risdate>2024</risdate><volume>128</volume><issue>28</issue><spage>11534</spage><epage>11542</epage><pages>11534-11542</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Developing new cathode catalysts to facilitate the electrochemical reaction toward the product of lithium oxalate would enhance the performance of Li–CO2 batteries. Herein, high-throughput calculations and machine learning technology were synergistically utilized to effectively screen new transition metal-based cathode catalysts. Gibbs free energies of CO2 reduction on the surfaces of 11 transition metal compounds were explored by the high-throughput first-principles calculations, and MoN was forecasted to be a promising cathode catalyst material, promoting the reaction product of lithium oxalate and possessing the minimum overpotential. On the other hand, based on the data of first-principles calculations, machine learning models with respect to overpotential were built to evaluate the electrochemical performances of transition metal nitrides. The origin of catalytic activity was revealed to be the adsorption energy by the feature importance analysis of overpotential. Our work not only puts forward a paradigm of the highly effective screening of cathode catalysts for Li–CO2 batteries but also provides a new understanding of the overpotential of CO2 reduction from the perspective of molecule adsorption.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.4c02641</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5114-6446</orcidid><orcidid>https://orcid.org/0000-0002-7039-3845</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2024-07, Vol.128 (28), p.11534-11542
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_4c02641
source ACS Journals: American Chemical Society Web Editions
subjects C: Energy Conversion and Storage
title High-Throughput Computation and Machine Learning Prediction Accelerating the Design of Cathode Catalysts for Li–CO2 Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Throughput%20Computation%20and%20Machine%20Learning%20Prediction%20Accelerating%20the%20Design%20of%20Cathode%20Catalysts%20for%20Li%E2%80%93CO2%20Batteries&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Yao,%20Tengyu&rft.date=2024-07-18&rft.volume=128&rft.issue=28&rft.spage=11534&rft.epage=11542&rft.pages=11534-11542&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.4c02641&rft_dat=%3Cacs%3Ed09312251%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true