High-Throughput Computation and Machine Learning Prediction Accelerating the Design of Cathode Catalysts for Li–CO2 Batteries
Developing new cathode catalysts to facilitate the electrochemical reaction toward the product of lithium oxalate would enhance the performance of Li–CO2 batteries. Herein, high-throughput calculations and machine learning technology were synergistically utilized to effectively screen new transition...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2024-07, Vol.128 (28), p.11534-11542 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11542 |
---|---|
container_issue | 28 |
container_start_page | 11534 |
container_title | Journal of physical chemistry. C |
container_volume | 128 |
creator | Yao, Tengyu Xu, Zhenming Hu, Tingsong Hu, Kang Cui, Xueliang Shen, Laifa |
description | Developing new cathode catalysts to facilitate the electrochemical reaction toward the product of lithium oxalate would enhance the performance of Li–CO2 batteries. Herein, high-throughput calculations and machine learning technology were synergistically utilized to effectively screen new transition metal-based cathode catalysts. Gibbs free energies of CO2 reduction on the surfaces of 11 transition metal compounds were explored by the high-throughput first-principles calculations, and MoN was forecasted to be a promising cathode catalyst material, promoting the reaction product of lithium oxalate and possessing the minimum overpotential. On the other hand, based on the data of first-principles calculations, machine learning models with respect to overpotential were built to evaluate the electrochemical performances of transition metal nitrides. The origin of catalytic activity was revealed to be the adsorption energy by the feature importance analysis of overpotential. Our work not only puts forward a paradigm of the highly effective screening of cathode catalysts for Li–CO2 batteries but also provides a new understanding of the overpotential of CO2 reduction from the perspective of molecule adsorption. |
doi_str_mv | 10.1021/acs.jpcc.4c02641 |
format | Article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_4c02641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d09312251</sourcerecordid><originalsourceid>FETCH-LOGICAL-a122t-56bf1030d3719652dde1cdf337774d81995b2f3d1f48c0c330674ed905ca8bf83</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqWwZ-kPIMWPOE6WJTyKFFQWZR05fiSuil3Z7oIV_AN_yJeQlorVGd07mpEOANcYzTAi-FbIOFtvpZzlEpEixydggitKMp4zdvo_5_wcXMS4RohRhOkEfC5sP2SrIfhdP2x3Cdb-fYRI1jsonIIvQg7WadhoEZx1PXwNWll56OdS6o0O4_KYp0HDex1t76A3sBZp8ErvKTYfMUVofICN_fn6rpcE3omUdLA6XoIzIzZRXx05BW-PD6t6kTXLp-d63mQCE5IyVnQGI4oU5bgqGFFKY6kMpZzzXJW4qlhHDFXY5KVEklJU8FyrCjEpys6UdApu_u6Ontq13wU3fmsxavfy2kM4ymuP8ugv8xVmgA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Throughput Computation and Machine Learning Prediction Accelerating the Design of Cathode Catalysts for Li–CO2 Batteries</title><source>ACS Journals: American Chemical Society Web Editions</source><creator>Yao, Tengyu ; Xu, Zhenming ; Hu, Tingsong ; Hu, Kang ; Cui, Xueliang ; Shen, Laifa</creator><creatorcontrib>Yao, Tengyu ; Xu, Zhenming ; Hu, Tingsong ; Hu, Kang ; Cui, Xueliang ; Shen, Laifa</creatorcontrib><description>Developing new cathode catalysts to facilitate the electrochemical reaction toward the product of lithium oxalate would enhance the performance of Li–CO2 batteries. Herein, high-throughput calculations and machine learning technology were synergistically utilized to effectively screen new transition metal-based cathode catalysts. Gibbs free energies of CO2 reduction on the surfaces of 11 transition metal compounds were explored by the high-throughput first-principles calculations, and MoN was forecasted to be a promising cathode catalyst material, promoting the reaction product of lithium oxalate and possessing the minimum overpotential. On the other hand, based on the data of first-principles calculations, machine learning models with respect to overpotential were built to evaluate the electrochemical performances of transition metal nitrides. The origin of catalytic activity was revealed to be the adsorption energy by the feature importance analysis of overpotential. Our work not only puts forward a paradigm of the highly effective screening of cathode catalysts for Li–CO2 batteries but also provides a new understanding of the overpotential of CO2 reduction from the perspective of molecule adsorption.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.4c02641</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Energy Conversion and Storage</subject><ispartof>Journal of physical chemistry. C, 2024-07, Vol.128 (28), p.11534-11542</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5114-6446 ; 0000-0002-7039-3845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.4c02641$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.4c02641$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Yao, Tengyu</creatorcontrib><creatorcontrib>Xu, Zhenming</creatorcontrib><creatorcontrib>Hu, Tingsong</creatorcontrib><creatorcontrib>Hu, Kang</creatorcontrib><creatorcontrib>Cui, Xueliang</creatorcontrib><creatorcontrib>Shen, Laifa</creatorcontrib><title>High-Throughput Computation and Machine Learning Prediction Accelerating the Design of Cathode Catalysts for Li–CO2 Batteries</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Developing new cathode catalysts to facilitate the electrochemical reaction toward the product of lithium oxalate would enhance the performance of Li–CO2 batteries. Herein, high-throughput calculations and machine learning technology were synergistically utilized to effectively screen new transition metal-based cathode catalysts. Gibbs free energies of CO2 reduction on the surfaces of 11 transition metal compounds were explored by the high-throughput first-principles calculations, and MoN was forecasted to be a promising cathode catalyst material, promoting the reaction product of lithium oxalate and possessing the minimum overpotential. On the other hand, based on the data of first-principles calculations, machine learning models with respect to overpotential were built to evaluate the electrochemical performances of transition metal nitrides. The origin of catalytic activity was revealed to be the adsorption energy by the feature importance analysis of overpotential. Our work not only puts forward a paradigm of the highly effective screening of cathode catalysts for Li–CO2 batteries but also provides a new understanding of the overpotential of CO2 reduction from the perspective of molecule adsorption.</description><subject>C: Energy Conversion and Storage</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kMtOwzAQRS0EEqWwZ-kPIMWPOE6WJTyKFFQWZR05fiSuil3Z7oIV_AN_yJeQlorVGd07mpEOANcYzTAi-FbIOFtvpZzlEpEixydggitKMp4zdvo_5_wcXMS4RohRhOkEfC5sP2SrIfhdP2x3Cdb-fYRI1jsonIIvQg7WadhoEZx1PXwNWll56OdS6o0O4_KYp0HDex1t76A3sBZp8ErvKTYfMUVofICN_fn6rpcE3omUdLA6XoIzIzZRXx05BW-PD6t6kTXLp-d63mQCE5IyVnQGI4oU5bgqGFFKY6kMpZzzXJW4qlhHDFXY5KVEklJU8FyrCjEpys6UdApu_u6Ontq13wU3fmsxavfy2kM4ymuP8ugv8xVmgA</recordid><startdate>20240718</startdate><enddate>20240718</enddate><creator>Yao, Tengyu</creator><creator>Xu, Zhenming</creator><creator>Hu, Tingsong</creator><creator>Hu, Kang</creator><creator>Cui, Xueliang</creator><creator>Shen, Laifa</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-5114-6446</orcidid><orcidid>https://orcid.org/0000-0002-7039-3845</orcidid></search><sort><creationdate>20240718</creationdate><title>High-Throughput Computation and Machine Learning Prediction Accelerating the Design of Cathode Catalysts for Li–CO2 Batteries</title><author>Yao, Tengyu ; Xu, Zhenming ; Hu, Tingsong ; Hu, Kang ; Cui, Xueliang ; Shen, Laifa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a122t-56bf1030d3719652dde1cdf337774d81995b2f3d1f48c0c330674ed905ca8bf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>C: Energy Conversion and Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yao, Tengyu</creatorcontrib><creatorcontrib>Xu, Zhenming</creatorcontrib><creatorcontrib>Hu, Tingsong</creatorcontrib><creatorcontrib>Hu, Kang</creatorcontrib><creatorcontrib>Cui, Xueliang</creatorcontrib><creatorcontrib>Shen, Laifa</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yao, Tengyu</au><au>Xu, Zhenming</au><au>Hu, Tingsong</au><au>Hu, Kang</au><au>Cui, Xueliang</au><au>Shen, Laifa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Throughput Computation and Machine Learning Prediction Accelerating the Design of Cathode Catalysts for Li–CO2 Batteries</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2024-07-18</date><risdate>2024</risdate><volume>128</volume><issue>28</issue><spage>11534</spage><epage>11542</epage><pages>11534-11542</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Developing new cathode catalysts to facilitate the electrochemical reaction toward the product of lithium oxalate would enhance the performance of Li–CO2 batteries. Herein, high-throughput calculations and machine learning technology were synergistically utilized to effectively screen new transition metal-based cathode catalysts. Gibbs free energies of CO2 reduction on the surfaces of 11 transition metal compounds were explored by the high-throughput first-principles calculations, and MoN was forecasted to be a promising cathode catalyst material, promoting the reaction product of lithium oxalate and possessing the minimum overpotential. On the other hand, based on the data of first-principles calculations, machine learning models with respect to overpotential were built to evaluate the electrochemical performances of transition metal nitrides. The origin of catalytic activity was revealed to be the adsorption energy by the feature importance analysis of overpotential. Our work not only puts forward a paradigm of the highly effective screening of cathode catalysts for Li–CO2 batteries but also provides a new understanding of the overpotential of CO2 reduction from the perspective of molecule adsorption.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.4c02641</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5114-6446</orcidid><orcidid>https://orcid.org/0000-0002-7039-3845</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2024-07, Vol.128 (28), p.11534-11542 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_acs_journals_10_1021_acs_jpcc_4c02641 |
source | ACS Journals: American Chemical Society Web Editions |
subjects | C: Energy Conversion and Storage |
title | High-Throughput Computation and Machine Learning Prediction Accelerating the Design of Cathode Catalysts for Li–CO2 Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Throughput%20Computation%20and%20Machine%20Learning%20Prediction%20Accelerating%20the%20Design%20of%20Cathode%20Catalysts%20for%20Li%E2%80%93CO2%20Batteries&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Yao,%20Tengyu&rft.date=2024-07-18&rft.volume=128&rft.issue=28&rft.spage=11534&rft.epage=11542&rft.pages=11534-11542&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.4c02641&rft_dat=%3Cacs%3Ed09312251%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |