The Influence of pH and Electrolyte Concentration on Fractional Protonation and CO2 Reduction Activity in Polymer-Encapsulated Cobalt Phthalocyanine

Polymer-encapsulated cobalt phthalocyanine (CoPc) is a model system for studying how polymer–catalyst interactions in electrocatalytic systems influence performance for the CO2 reduction reaction. In particular, understanding how bulk electrolyte and proton concentration influence polymer protonatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2023-07, Vol.127 (29), p.14041-14052
Hauptverfasser: Soucy, Taylor L., Dean, William S., Rivera Cruz, Kevin E., Eisenberg, Jonah B., Shi, Lirong, McCrory, Charles C. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14052
container_issue 29
container_start_page 14041
container_title Journal of physical chemistry. C
container_volume 127
creator Soucy, Taylor L.
Dean, William S.
Rivera Cruz, Kevin E.
Eisenberg, Jonah B.
Shi, Lirong
McCrory, Charles C. L.
description Polymer-encapsulated cobalt phthalocyanine (CoPc) is a model system for studying how polymer–catalyst interactions in electrocatalytic systems influence performance for the CO2 reduction reaction. In particular, understanding how bulk electrolyte and proton concentration influence polymer protonation and in turn how the extent of polymer protonation influences catalytic activity and selectivity is crucial to understanding polymer–catalyst composite materials. We report a study of the dependence of bulk pH and electrolyte concentration on the fractional protonation of poly­(4-vinylpyridine) and related polymers with both electrochemical and spectroscopic evidence. In addition, we show that the fractional protonation of the polymer is directly related to both the activity of the catalyst and the reaction selectivity for the CO2 reduction reaction over the competitive hydrogen evolution reaction. Of particular note is that the fractional protonation of the film is related to electrolyte concentration, which suggests that the transport of counterions plays an important role in regulating proton transport within the polymer film. These insights suggest that electrolyte concentration and pH play an important role in the electrocatalytic performance for polymer–catalyst composite systems, and these influences should be considered in both experimental preparation and analysis.
doi_str_mv 10.1021/acs.jpcc.3c01490
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_3c01490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h29107170</sourcerecordid><originalsourceid>FETCH-LOGICAL-a192t-e9c852127dba5063067f2a9521fea47edfc62f94cac271a1b157fb4a35b8e4fa3</originalsourceid><addsrcrecordid>eNo9UF1Lw0AQPETBWn338X6AqffZNI8lVFsotEh9DpvLHk0570pyEfo__MFeaxEWZpjZHdgh5JmzCWeCv4LpJ4ejMRNpGFcFuyEjXkiR5Urr23-u8nvy0PcHxrRkXI7Iz26PdOWtG9AbpMHS45KCb-jCoYldcKeItAzJ87GD2AZP07x1YM4cHN12ISZycc535UbQD2yGi0_nCb7beKKtp9sU9oVdtvAGjv3gIGJaDzW4SLf7uAcXzAl86_GR3FlwPT5dcUw-3xa7cpmtN--rcr7OgBciZliYmRZc5E0Nmk0lm-ZWQJEki6BybKyZClsoA0bkHHjNdW5rBVLXM1QW5Ji8_OWm8qpDGLr0UF9xVp0brS5iarS6Nip_AahZbtg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Influence of pH and Electrolyte Concentration on Fractional Protonation and CO2 Reduction Activity in Polymer-Encapsulated Cobalt Phthalocyanine</title><source>American Chemical Society Publications</source><creator>Soucy, Taylor L. ; Dean, William S. ; Rivera Cruz, Kevin E. ; Eisenberg, Jonah B. ; Shi, Lirong ; McCrory, Charles C. L.</creator><creatorcontrib>Soucy, Taylor L. ; Dean, William S. ; Rivera Cruz, Kevin E. ; Eisenberg, Jonah B. ; Shi, Lirong ; McCrory, Charles C. L.</creatorcontrib><description>Polymer-encapsulated cobalt phthalocyanine (CoPc) is a model system for studying how polymer–catalyst interactions in electrocatalytic systems influence performance for the CO2 reduction reaction. In particular, understanding how bulk electrolyte and proton concentration influence polymer protonation and in turn how the extent of polymer protonation influences catalytic activity and selectivity is crucial to understanding polymer–catalyst composite materials. We report a study of the dependence of bulk pH and electrolyte concentration on the fractional protonation of poly­(4-vinylpyridine) and related polymers with both electrochemical and spectroscopic evidence. In addition, we show that the fractional protonation of the polymer is directly related to both the activity of the catalyst and the reaction selectivity for the CO2 reduction reaction over the competitive hydrogen evolution reaction. Of particular note is that the fractional protonation of the film is related to electrolyte concentration, which suggests that the transport of counterions plays an important role in regulating proton transport within the polymer film. These insights suggest that electrolyte concentration and pH play an important role in the electrocatalytic performance for polymer–catalyst composite systems, and these influences should be considered in both experimental preparation and analysis.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.3c01490</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Energy Conversion and Storage</subject><ispartof>Journal of physical chemistry. C, 2023-07, Vol.127 (29), p.14041-14052</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9039-7192 ; 0000-0001-5857-4486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.3c01490$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.3c01490$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56717,56767</link.rule.ids></links><search><creatorcontrib>Soucy, Taylor L.</creatorcontrib><creatorcontrib>Dean, William S.</creatorcontrib><creatorcontrib>Rivera Cruz, Kevin E.</creatorcontrib><creatorcontrib>Eisenberg, Jonah B.</creatorcontrib><creatorcontrib>Shi, Lirong</creatorcontrib><creatorcontrib>McCrory, Charles C. L.</creatorcontrib><title>The Influence of pH and Electrolyte Concentration on Fractional Protonation and CO2 Reduction Activity in Polymer-Encapsulated Cobalt Phthalocyanine</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Polymer-encapsulated cobalt phthalocyanine (CoPc) is a model system for studying how polymer–catalyst interactions in electrocatalytic systems influence performance for the CO2 reduction reaction. In particular, understanding how bulk electrolyte and proton concentration influence polymer protonation and in turn how the extent of polymer protonation influences catalytic activity and selectivity is crucial to understanding polymer–catalyst composite materials. We report a study of the dependence of bulk pH and electrolyte concentration on the fractional protonation of poly­(4-vinylpyridine) and related polymers with both electrochemical and spectroscopic evidence. In addition, we show that the fractional protonation of the polymer is directly related to both the activity of the catalyst and the reaction selectivity for the CO2 reduction reaction over the competitive hydrogen evolution reaction. Of particular note is that the fractional protonation of the film is related to electrolyte concentration, which suggests that the transport of counterions plays an important role in regulating proton transport within the polymer film. These insights suggest that electrolyte concentration and pH play an important role in the electrocatalytic performance for polymer–catalyst composite systems, and these influences should be considered in both experimental preparation and analysis.</description><subject>C: Energy Conversion and Storage</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9UF1Lw0AQPETBWn338X6AqffZNI8lVFsotEh9DpvLHk0570pyEfo__MFeaxEWZpjZHdgh5JmzCWeCv4LpJ4ejMRNpGFcFuyEjXkiR5Urr23-u8nvy0PcHxrRkXI7Iz26PdOWtG9AbpMHS45KCb-jCoYldcKeItAzJ87GD2AZP07x1YM4cHN12ISZycc535UbQD2yGi0_nCb7beKKtp9sU9oVdtvAGjv3gIGJaDzW4SLf7uAcXzAl86_GR3FlwPT5dcUw-3xa7cpmtN--rcr7OgBciZliYmRZc5E0Nmk0lm-ZWQJEki6BybKyZClsoA0bkHHjNdW5rBVLXM1QW5Ji8_OWm8qpDGLr0UF9xVp0brS5iarS6Nip_AahZbtg</recordid><startdate>20230727</startdate><enddate>20230727</enddate><creator>Soucy, Taylor L.</creator><creator>Dean, William S.</creator><creator>Rivera Cruz, Kevin E.</creator><creator>Eisenberg, Jonah B.</creator><creator>Shi, Lirong</creator><creator>McCrory, Charles C. L.</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-9039-7192</orcidid><orcidid>https://orcid.org/0000-0001-5857-4486</orcidid></search><sort><creationdate>20230727</creationdate><title>The Influence of pH and Electrolyte Concentration on Fractional Protonation and CO2 Reduction Activity in Polymer-Encapsulated Cobalt Phthalocyanine</title><author>Soucy, Taylor L. ; Dean, William S. ; Rivera Cruz, Kevin E. ; Eisenberg, Jonah B. ; Shi, Lirong ; McCrory, Charles C. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a192t-e9c852127dba5063067f2a9521fea47edfc62f94cac271a1b157fb4a35b8e4fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C: Energy Conversion and Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soucy, Taylor L.</creatorcontrib><creatorcontrib>Dean, William S.</creatorcontrib><creatorcontrib>Rivera Cruz, Kevin E.</creatorcontrib><creatorcontrib>Eisenberg, Jonah B.</creatorcontrib><creatorcontrib>Shi, Lirong</creatorcontrib><creatorcontrib>McCrory, Charles C. L.</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soucy, Taylor L.</au><au>Dean, William S.</au><au>Rivera Cruz, Kevin E.</au><au>Eisenberg, Jonah B.</au><au>Shi, Lirong</au><au>McCrory, Charles C. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Influence of pH and Electrolyte Concentration on Fractional Protonation and CO2 Reduction Activity in Polymer-Encapsulated Cobalt Phthalocyanine</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2023-07-27</date><risdate>2023</risdate><volume>127</volume><issue>29</issue><spage>14041</spage><epage>14052</epage><pages>14041-14052</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Polymer-encapsulated cobalt phthalocyanine (CoPc) is a model system for studying how polymer–catalyst interactions in electrocatalytic systems influence performance for the CO2 reduction reaction. In particular, understanding how bulk electrolyte and proton concentration influence polymer protonation and in turn how the extent of polymer protonation influences catalytic activity and selectivity is crucial to understanding polymer–catalyst composite materials. We report a study of the dependence of bulk pH and electrolyte concentration on the fractional protonation of poly­(4-vinylpyridine) and related polymers with both electrochemical and spectroscopic evidence. In addition, we show that the fractional protonation of the polymer is directly related to both the activity of the catalyst and the reaction selectivity for the CO2 reduction reaction over the competitive hydrogen evolution reaction. Of particular note is that the fractional protonation of the film is related to electrolyte concentration, which suggests that the transport of counterions plays an important role in regulating proton transport within the polymer film. These insights suggest that electrolyte concentration and pH play an important role in the electrocatalytic performance for polymer–catalyst composite systems, and these influences should be considered in both experimental preparation and analysis.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.3c01490</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9039-7192</orcidid><orcidid>https://orcid.org/0000-0001-5857-4486</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2023-07, Vol.127 (29), p.14041-14052
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_3c01490
source American Chemical Society Publications
subjects C: Energy Conversion and Storage
title The Influence of pH and Electrolyte Concentration on Fractional Protonation and CO2 Reduction Activity in Polymer-Encapsulated Cobalt Phthalocyanine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T15%3A04%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Influence%20of%20pH%20and%20Electrolyte%20Concentration%20on%20Fractional%20Protonation%20and%20CO2%20Reduction%20Activity%20in%20Polymer-Encapsulated%20Cobalt%20Phthalocyanine&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Soucy,%20Taylor%20L.&rft.date=2023-07-27&rft.volume=127&rft.issue=29&rft.spage=14041&rft.epage=14052&rft.pages=14041-14052&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.3c01490&rft_dat=%3Cacs%3Eh29107170%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true