Adsorbed CO2‑Mediated CO2 Photoconversion Cycle into Solar Fuel at the O Vacancy Site of Zirconium Oxide
ZrO2 photoreduces 13CO2 under ultraviolet–visible light to 13C-product(s) negligibly affected by adventitious carbon. The dual-site reaction pathway was theoretically clarified from CO2 to CO using monoclinic ZrO2, followed by multiple hydrogenation steps to methane over Ni nanoparticles. The oxygen...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2023-02, Vol.127 (4), p.1776-1788 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1788 |
---|---|
container_issue | 4 |
container_start_page | 1776 |
container_title | Journal of physical chemistry. C |
container_volume | 127 |
creator | Hara, Keisuke Nozaki, Misa Hirayama, Rumiko Ishii, Rento Niki, Kaori Izumi, Yasuo |
description | ZrO2 photoreduces 13CO2 under ultraviolet–visible light to 13C-product(s) negligibly affected by adventitious carbon. The dual-site reaction pathway was theoretically clarified from CO2 to CO using monoclinic ZrO2, followed by multiple hydrogenation steps to methane over Ni nanoparticles. The oxygen vacancy (VO ••) played essential roles, including the M-shaped CO2 adsorption over the VO •• site and the direct occupation of the VO •• site by the dissociated O and/or hydroxy group from the hydroxycarbonyl species favorably on the ZrO2(111) surface. The rate-limiting step was for the regeneration of the VO •• site with an activation energy (E act) of 2.6 eV, but the water desorption energy was greatly compensated by the CO2 adsorption energy at the VO •• site, in contrast to the first-row transition-metal oxides. The COH and/or CO species transfer from ZrO2 to Ni in a concerted mechanism was energetically favorable, and the apparent E act value from hydroxycarbonyl species to methane was reduced to 0.67 eV. |
doi_str_mv | 10.1021/acs.jpcc.2c06048 |
format | Article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_2c06048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c521530595</sourcerecordid><originalsourceid>FETCH-LOGICAL-a192t-ff260a7ca83d5d4c54a53bc197da70cefd085daa012933c148c9934b6f8647d93</originalsourceid><addsrcrecordid>eNo9kMtKw0AUhgdRsFb3Ls8DmDrXJLMswapQiVB14SZMz0zohJiRZCp25yv4ij6JUYur_wL_OfARcs7ojFHOLg0Os-YVccaRplTmB2TCtOBJJpU6_PcyOyYnw9BQqgRlYkKauR1Cv3YWipJ_fXzeOetN_ItwvwkxYOjeXD_40EGxw9aB72KAVWhND4uta8FEiBsHJTwZNB3uYOWjg1DDs-_Hsd--QPnurTslR7VpB3e21yl5XFw9FDfJsry-LebLxDDNY1LXPKUmQ5MLq6xEJY0Sa2Q6syaj6GpLc2WNoYxrIZDJHLUWcp3WeSozq8WUXPzdHZFUTdj23fitYrT64VT9liOnas9JfAMc_F4X</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adsorbed CO2‑Mediated CO2 Photoconversion Cycle into Solar Fuel at the O Vacancy Site of Zirconium Oxide</title><source>ACS Publications</source><creator>Hara, Keisuke ; Nozaki, Misa ; Hirayama, Rumiko ; Ishii, Rento ; Niki, Kaori ; Izumi, Yasuo</creator><creatorcontrib>Hara, Keisuke ; Nozaki, Misa ; Hirayama, Rumiko ; Ishii, Rento ; Niki, Kaori ; Izumi, Yasuo</creatorcontrib><description>ZrO2 photoreduces 13CO2 under ultraviolet–visible light to 13C-product(s) negligibly affected by adventitious carbon. The dual-site reaction pathway was theoretically clarified from CO2 to CO using monoclinic ZrO2, followed by multiple hydrogenation steps to methane over Ni nanoparticles. The oxygen vacancy (VO ••) played essential roles, including the M-shaped CO2 adsorption over the VO •• site and the direct occupation of the VO •• site by the dissociated O and/or hydroxy group from the hydroxycarbonyl species favorably on the ZrO2(111) surface. The rate-limiting step was for the regeneration of the VO •• site with an activation energy (E act) of 2.6 eV, but the water desorption energy was greatly compensated by the CO2 adsorption energy at the VO •• site, in contrast to the first-row transition-metal oxides. The COH and/or CO species transfer from ZrO2 to Ni in a concerted mechanism was energetically favorable, and the apparent E act value from hydroxycarbonyl species to methane was reduced to 0.67 eV.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c06048</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><ispartof>Journal of physical chemistry. C, 2023-02, Vol.127 (4), p.1776-1788</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8366-1864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.2c06048$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.2c06048$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Hara, Keisuke</creatorcontrib><creatorcontrib>Nozaki, Misa</creatorcontrib><creatorcontrib>Hirayama, Rumiko</creatorcontrib><creatorcontrib>Ishii, Rento</creatorcontrib><creatorcontrib>Niki, Kaori</creatorcontrib><creatorcontrib>Izumi, Yasuo</creatorcontrib><title>Adsorbed CO2‑Mediated CO2 Photoconversion Cycle into Solar Fuel at the O Vacancy Site of Zirconium Oxide</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>ZrO2 photoreduces 13CO2 under ultraviolet–visible light to 13C-product(s) negligibly affected by adventitious carbon. The dual-site reaction pathway was theoretically clarified from CO2 to CO using monoclinic ZrO2, followed by multiple hydrogenation steps to methane over Ni nanoparticles. The oxygen vacancy (VO ••) played essential roles, including the M-shaped CO2 adsorption over the VO •• site and the direct occupation of the VO •• site by the dissociated O and/or hydroxy group from the hydroxycarbonyl species favorably on the ZrO2(111) surface. The rate-limiting step was for the regeneration of the VO •• site with an activation energy (E act) of 2.6 eV, but the water desorption energy was greatly compensated by the CO2 adsorption energy at the VO •• site, in contrast to the first-row transition-metal oxides. The COH and/or CO species transfer from ZrO2 to Ni in a concerted mechanism was energetically favorable, and the apparent E act value from hydroxycarbonyl species to methane was reduced to 0.67 eV.</description><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kMtKw0AUhgdRsFb3Ls8DmDrXJLMswapQiVB14SZMz0zohJiRZCp25yv4ij6JUYur_wL_OfARcs7ojFHOLg0Os-YVccaRplTmB2TCtOBJJpU6_PcyOyYnw9BQqgRlYkKauR1Cv3YWipJ_fXzeOetN_ItwvwkxYOjeXD_40EGxw9aB72KAVWhND4uta8FEiBsHJTwZNB3uYOWjg1DDs-_Hsd--QPnurTslR7VpB3e21yl5XFw9FDfJsry-LebLxDDNY1LXPKUmQ5MLq6xEJY0Sa2Q6syaj6GpLc2WNoYxrIZDJHLUWcp3WeSozq8WUXPzdHZFUTdj23fitYrT64VT9liOnas9JfAMc_F4X</recordid><startdate>20230202</startdate><enddate>20230202</enddate><creator>Hara, Keisuke</creator><creator>Nozaki, Misa</creator><creator>Hirayama, Rumiko</creator><creator>Ishii, Rento</creator><creator>Niki, Kaori</creator><creator>Izumi, Yasuo</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-8366-1864</orcidid></search><sort><creationdate>20230202</creationdate><title>Adsorbed CO2‑Mediated CO2 Photoconversion Cycle into Solar Fuel at the O Vacancy Site of Zirconium Oxide</title><author>Hara, Keisuke ; Nozaki, Misa ; Hirayama, Rumiko ; Ishii, Rento ; Niki, Kaori ; Izumi, Yasuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a192t-ff260a7ca83d5d4c54a53bc197da70cefd085daa012933c148c9934b6f8647d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C: Chemical and Catalytic Reactivity at Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hara, Keisuke</creatorcontrib><creatorcontrib>Nozaki, Misa</creatorcontrib><creatorcontrib>Hirayama, Rumiko</creatorcontrib><creatorcontrib>Ishii, Rento</creatorcontrib><creatorcontrib>Niki, Kaori</creatorcontrib><creatorcontrib>Izumi, Yasuo</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hara, Keisuke</au><au>Nozaki, Misa</au><au>Hirayama, Rumiko</au><au>Ishii, Rento</au><au>Niki, Kaori</au><au>Izumi, Yasuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorbed CO2‑Mediated CO2 Photoconversion Cycle into Solar Fuel at the O Vacancy Site of Zirconium Oxide</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2023-02-02</date><risdate>2023</risdate><volume>127</volume><issue>4</issue><spage>1776</spage><epage>1788</epage><pages>1776-1788</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>ZrO2 photoreduces 13CO2 under ultraviolet–visible light to 13C-product(s) negligibly affected by adventitious carbon. The dual-site reaction pathway was theoretically clarified from CO2 to CO using monoclinic ZrO2, followed by multiple hydrogenation steps to methane over Ni nanoparticles. The oxygen vacancy (VO ••) played essential roles, including the M-shaped CO2 adsorption over the VO •• site and the direct occupation of the VO •• site by the dissociated O and/or hydroxy group from the hydroxycarbonyl species favorably on the ZrO2(111) surface. The rate-limiting step was for the regeneration of the VO •• site with an activation energy (E act) of 2.6 eV, but the water desorption energy was greatly compensated by the CO2 adsorption energy at the VO •• site, in contrast to the first-row transition-metal oxides. The COH and/or CO species transfer from ZrO2 to Ni in a concerted mechanism was energetically favorable, and the apparent E act value from hydroxycarbonyl species to methane was reduced to 0.67 eV.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.2c06048</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8366-1864</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2023-02, Vol.127 (4), p.1776-1788 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_acs_journals_10_1021_acs_jpcc_2c06048 |
source | ACS Publications |
subjects | C: Chemical and Catalytic Reactivity at Interfaces |
title | Adsorbed CO2‑Mediated CO2 Photoconversion Cycle into Solar Fuel at the O Vacancy Site of Zirconium Oxide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T17%3A37%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorbed%20CO2%E2%80%91Mediated%20CO2%20Photoconversion%20Cycle%20into%20Solar%20Fuel%20at%20the%20O%20Vacancy%20Site%20of%20Zirconium%20Oxide&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Hara,%20Keisuke&rft.date=2023-02-02&rft.volume=127&rft.issue=4&rft.spage=1776&rft.epage=1788&rft.pages=1776-1788&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c06048&rft_dat=%3Cacs%3Ec521530595%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |