Adsorbed CO2‑Mediated CO2 Photoconversion Cycle into Solar Fuel at the O Vacancy Site of Zirconium Oxide

ZrO2 photoreduces 13CO2 under ultraviolet–visible light to 13C-product(s) negligibly affected by adventitious carbon. The dual-site reaction pathway was theoretically clarified from CO2 to CO using monoclinic ZrO2, followed by multiple hydrogenation steps to methane over Ni nanoparticles. The oxygen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2023-02, Vol.127 (4), p.1776-1788
Hauptverfasser: Hara, Keisuke, Nozaki, Misa, Hirayama, Rumiko, Ishii, Rento, Niki, Kaori, Izumi, Yasuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1788
container_issue 4
container_start_page 1776
container_title Journal of physical chemistry. C
container_volume 127
creator Hara, Keisuke
Nozaki, Misa
Hirayama, Rumiko
Ishii, Rento
Niki, Kaori
Izumi, Yasuo
description ZrO2 photoreduces 13CO2 under ultraviolet–visible light to 13C-product(s) negligibly affected by adventitious carbon. The dual-site reaction pathway was theoretically clarified from CO2 to CO using monoclinic ZrO2, followed by multiple hydrogenation steps to methane over Ni nanoparticles. The oxygen vacancy (VO ••) played essential roles, including the M-shaped CO2 adsorption over the VO •• site and the direct occupation of the VO •• site by the dissociated O and/or hydroxy group from the hydroxycarbonyl species favorably on the ZrO2(111) surface. The rate-limiting step was for the regeneration of the VO •• site with an activation energy (E act) of 2.6 eV, but the water desorption energy was greatly compensated by the CO2 adsorption energy at the VO •• site, in contrast to the first-row transition-metal oxides. The COH and/or CO species transfer from ZrO2 to Ni in a concerted mechanism was energetically favorable, and the apparent E act value from hydroxycarbonyl species to methane was reduced to 0.67 eV.
doi_str_mv 10.1021/acs.jpcc.2c06048
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_2c06048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c521530595</sourcerecordid><originalsourceid>FETCH-LOGICAL-a192t-ff260a7ca83d5d4c54a53bc197da70cefd085daa012933c148c9934b6f8647d93</originalsourceid><addsrcrecordid>eNo9kMtKw0AUhgdRsFb3Ls8DmDrXJLMswapQiVB14SZMz0zohJiRZCp25yv4ij6JUYur_wL_OfARcs7ojFHOLg0Os-YVccaRplTmB2TCtOBJJpU6_PcyOyYnw9BQqgRlYkKauR1Cv3YWipJ_fXzeOetN_ItwvwkxYOjeXD_40EGxw9aB72KAVWhND4uta8FEiBsHJTwZNB3uYOWjg1DDs-_Hsd--QPnurTslR7VpB3e21yl5XFw9FDfJsry-LebLxDDNY1LXPKUmQ5MLq6xEJY0Sa2Q6syaj6GpLc2WNoYxrIZDJHLUWcp3WeSozq8WUXPzdHZFUTdj23fitYrT64VT9liOnas9JfAMc_F4X</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adsorbed CO2‑Mediated CO2 Photoconversion Cycle into Solar Fuel at the O Vacancy Site of Zirconium Oxide</title><source>ACS Publications</source><creator>Hara, Keisuke ; Nozaki, Misa ; Hirayama, Rumiko ; Ishii, Rento ; Niki, Kaori ; Izumi, Yasuo</creator><creatorcontrib>Hara, Keisuke ; Nozaki, Misa ; Hirayama, Rumiko ; Ishii, Rento ; Niki, Kaori ; Izumi, Yasuo</creatorcontrib><description>ZrO2 photoreduces 13CO2 under ultraviolet–visible light to 13C-product(s) negligibly affected by adventitious carbon. The dual-site reaction pathway was theoretically clarified from CO2 to CO using monoclinic ZrO2, followed by multiple hydrogenation steps to methane over Ni nanoparticles. The oxygen vacancy (VO ••) played essential roles, including the M-shaped CO2 adsorption over the VO •• site and the direct occupation of the VO •• site by the dissociated O and/or hydroxy group from the hydroxycarbonyl species favorably on the ZrO2(111) surface. The rate-limiting step was for the regeneration of the VO •• site with an activation energy (E act) of 2.6 eV, but the water desorption energy was greatly compensated by the CO2 adsorption energy at the VO •• site, in contrast to the first-row transition-metal oxides. The COH and/or CO species transfer from ZrO2 to Ni in a concerted mechanism was energetically favorable, and the apparent E act value from hydroxycarbonyl species to methane was reduced to 0.67 eV.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c06048</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><ispartof>Journal of physical chemistry. C, 2023-02, Vol.127 (4), p.1776-1788</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8366-1864</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.2c06048$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.2c06048$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Hara, Keisuke</creatorcontrib><creatorcontrib>Nozaki, Misa</creatorcontrib><creatorcontrib>Hirayama, Rumiko</creatorcontrib><creatorcontrib>Ishii, Rento</creatorcontrib><creatorcontrib>Niki, Kaori</creatorcontrib><creatorcontrib>Izumi, Yasuo</creatorcontrib><title>Adsorbed CO2‑Mediated CO2 Photoconversion Cycle into Solar Fuel at the O Vacancy Site of Zirconium Oxide</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>ZrO2 photoreduces 13CO2 under ultraviolet–visible light to 13C-product(s) negligibly affected by adventitious carbon. The dual-site reaction pathway was theoretically clarified from CO2 to CO using monoclinic ZrO2, followed by multiple hydrogenation steps to methane over Ni nanoparticles. The oxygen vacancy (VO ••) played essential roles, including the M-shaped CO2 adsorption over the VO •• site and the direct occupation of the VO •• site by the dissociated O and/or hydroxy group from the hydroxycarbonyl species favorably on the ZrO2(111) surface. The rate-limiting step was for the regeneration of the VO •• site with an activation energy (E act) of 2.6 eV, but the water desorption energy was greatly compensated by the CO2 adsorption energy at the VO •• site, in contrast to the first-row transition-metal oxides. The COH and/or CO species transfer from ZrO2 to Ni in a concerted mechanism was energetically favorable, and the apparent E act value from hydroxycarbonyl species to methane was reduced to 0.67 eV.</description><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kMtKw0AUhgdRsFb3Ls8DmDrXJLMswapQiVB14SZMz0zohJiRZCp25yv4ij6JUYur_wL_OfARcs7ojFHOLg0Os-YVccaRplTmB2TCtOBJJpU6_PcyOyYnw9BQqgRlYkKauR1Cv3YWipJ_fXzeOetN_ItwvwkxYOjeXD_40EGxw9aB72KAVWhND4uta8FEiBsHJTwZNB3uYOWjg1DDs-_Hsd--QPnurTslR7VpB3e21yl5XFw9FDfJsry-LebLxDDNY1LXPKUmQ5MLq6xEJY0Sa2Q6syaj6GpLc2WNoYxrIZDJHLUWcp3WeSozq8WUXPzdHZFUTdj23fitYrT64VT9liOnas9JfAMc_F4X</recordid><startdate>20230202</startdate><enddate>20230202</enddate><creator>Hara, Keisuke</creator><creator>Nozaki, Misa</creator><creator>Hirayama, Rumiko</creator><creator>Ishii, Rento</creator><creator>Niki, Kaori</creator><creator>Izumi, Yasuo</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-8366-1864</orcidid></search><sort><creationdate>20230202</creationdate><title>Adsorbed CO2‑Mediated CO2 Photoconversion Cycle into Solar Fuel at the O Vacancy Site of Zirconium Oxide</title><author>Hara, Keisuke ; Nozaki, Misa ; Hirayama, Rumiko ; Ishii, Rento ; Niki, Kaori ; Izumi, Yasuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a192t-ff260a7ca83d5d4c54a53bc197da70cefd085daa012933c148c9934b6f8647d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>C: Chemical and Catalytic Reactivity at Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hara, Keisuke</creatorcontrib><creatorcontrib>Nozaki, Misa</creatorcontrib><creatorcontrib>Hirayama, Rumiko</creatorcontrib><creatorcontrib>Ishii, Rento</creatorcontrib><creatorcontrib>Niki, Kaori</creatorcontrib><creatorcontrib>Izumi, Yasuo</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hara, Keisuke</au><au>Nozaki, Misa</au><au>Hirayama, Rumiko</au><au>Ishii, Rento</au><au>Niki, Kaori</au><au>Izumi, Yasuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorbed CO2‑Mediated CO2 Photoconversion Cycle into Solar Fuel at the O Vacancy Site of Zirconium Oxide</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2023-02-02</date><risdate>2023</risdate><volume>127</volume><issue>4</issue><spage>1776</spage><epage>1788</epage><pages>1776-1788</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>ZrO2 photoreduces 13CO2 under ultraviolet–visible light to 13C-product(s) negligibly affected by adventitious carbon. The dual-site reaction pathway was theoretically clarified from CO2 to CO using monoclinic ZrO2, followed by multiple hydrogenation steps to methane over Ni nanoparticles. The oxygen vacancy (VO ••) played essential roles, including the M-shaped CO2 adsorption over the VO •• site and the direct occupation of the VO •• site by the dissociated O and/or hydroxy group from the hydroxycarbonyl species favorably on the ZrO2(111) surface. The rate-limiting step was for the regeneration of the VO •• site with an activation energy (E act) of 2.6 eV, but the water desorption energy was greatly compensated by the CO2 adsorption energy at the VO •• site, in contrast to the first-row transition-metal oxides. The COH and/or CO species transfer from ZrO2 to Ni in a concerted mechanism was energetically favorable, and the apparent E act value from hydroxycarbonyl species to methane was reduced to 0.67 eV.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.2c06048</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8366-1864</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2023-02, Vol.127 (4), p.1776-1788
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_2c06048
source ACS Publications
subjects C: Chemical and Catalytic Reactivity at Interfaces
title Adsorbed CO2‑Mediated CO2 Photoconversion Cycle into Solar Fuel at the O Vacancy Site of Zirconium Oxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T17%3A37%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorbed%20CO2%E2%80%91Mediated%20CO2%20Photoconversion%20Cycle%20into%20Solar%20Fuel%20at%20the%20O%20Vacancy%20Site%20of%20Zirconium%20Oxide&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Hara,%20Keisuke&rft.date=2023-02-02&rft.volume=127&rft.issue=4&rft.spage=1776&rft.epage=1788&rft.pages=1776-1788&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c06048&rft_dat=%3Cacs%3Ec521530595%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true