Interface Reactions Dominate Low-Temperature CO Oxidation Activity over Pt/CeO2

First-principles-based kinetic Monte Carlo simulations and kinetic experiments are used to explore CO oxidation over Pt/CeO2. The simulations compare CO oxidation over a ceria-supported ∼1 nm particle with simulations of a free-standing particle and Pt(111). The onset of the CO oxidation over ceria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2022-09, Vol.126 (38), p.16164-16171
Hauptverfasser: Bosio, Noemi, Di, Mengqiao, Skoglundh, Magnus, Carlsson, Per-Anders, Grönbeck, Henrik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16171
container_issue 38
container_start_page 16164
container_title Journal of physical chemistry. C
container_volume 126
creator Bosio, Noemi
Di, Mengqiao
Skoglundh, Magnus
Carlsson, Per-Anders
Grönbeck, Henrik
description First-principles-based kinetic Monte Carlo simulations and kinetic experiments are used to explore CO oxidation over Pt/CeO2. The simulations compare CO oxidation over a ceria-supported ∼1 nm particle with simulations of a free-standing particle and Pt(111). The onset of the CO oxidation over ceria supported Pt is shifted to lower temperatures compared to the unsupported systems thanks to a Mars–van Krevelen mechanism at the Pt/CeO2 interface perimeter, which is not sensitive to CO poisoning. Both the Mars–van Krevelen mechanism and the conventional Langmuir–Hinshelwood mechanism over the Pt nanoparticle are contributing to the conversion after the reaction onset. The reaction orders in CO and O2 are compared experimentally for Pt/CeO2  and Pt/Al2O3. The reaction orders over Pt/CeO2  are close to zero for both CO and O2, whereas the corresponding reaction orders are −0.75 and 0.68 over Pt/Al2O3. The measured zero orders for Pt/CeO2  show the absence of CO/O2 site competition and underline the relevance of interface reactions. The measurements for Pt/Al2O3 indicate that the main reaction path for CO oxidation over Pt is a conventional Langmuir–Hinshelwood reaction. The results elucidate the interplay between condition-dependent reaction mechanisms for CO oxidation over Pt supported on reducible oxides.
doi_str_mv 10.1021/acs.jpcc.2c04833
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_2c04833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>f60434914</sourcerecordid><originalsourceid>FETCH-LOGICAL-a164t-d532ec8ab22911f0870475720a496ddd08c3cc15af3fe029e4debd23ed709be03</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKfvPuYH2O4mN1nax1F1DgoVmc8lTW6hxbWjzab-ezsdPp3D4XAu92PsXkAsQIqFdWPc7p2LpQOVIF6wmUhRRkZpffnvlblmN-PYAmgEgTNWbLpAQ20d8TeyLjR9N_LHftd0NhDP-89oS7s9DTYcBuJZwYuvxttTja-m9rEJ37w_0sBfwyKjQt6yq9p-jHR31jl7f37aZi9RXqw32SqPrFiqEHmNklxiKylTIWpIDCijjQSr0qX3HhKHzglta6wJZErKU-UlkjeQVgQ4Zw9_u9PfZdsfhm66VgooTzDK33CCUZ5h4A88t1Rj</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interface Reactions Dominate Low-Temperature CO Oxidation Activity over Pt/CeO2</title><source>ACS Publications</source><creator>Bosio, Noemi ; Di, Mengqiao ; Skoglundh, Magnus ; Carlsson, Per-Anders ; Grönbeck, Henrik</creator><creatorcontrib>Bosio, Noemi ; Di, Mengqiao ; Skoglundh, Magnus ; Carlsson, Per-Anders ; Grönbeck, Henrik</creatorcontrib><description>First-principles-based kinetic Monte Carlo simulations and kinetic experiments are used to explore CO oxidation over Pt/CeO2. The simulations compare CO oxidation over a ceria-supported ∼1 nm particle with simulations of a free-standing particle and Pt(111). The onset of the CO oxidation over ceria supported Pt is shifted to lower temperatures compared to the unsupported systems thanks to a Mars–van Krevelen mechanism at the Pt/CeO2 interface perimeter, which is not sensitive to CO poisoning. Both the Mars–van Krevelen mechanism and the conventional Langmuir–Hinshelwood mechanism over the Pt nanoparticle are contributing to the conversion after the reaction onset. The reaction orders in CO and O2 are compared experimentally for Pt/CeO2  and Pt/Al2O3. The reaction orders over Pt/CeO2  are close to zero for both CO and O2, whereas the corresponding reaction orders are −0.75 and 0.68 over Pt/Al2O3. The measured zero orders for Pt/CeO2  show the absence of CO/O2 site competition and underline the relevance of interface reactions. The measurements for Pt/Al2O3 indicate that the main reaction path for CO oxidation over Pt is a conventional Langmuir–Hinshelwood reaction. The results elucidate the interplay between condition-dependent reaction mechanisms for CO oxidation over Pt supported on reducible oxides.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.2c04833</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><ispartof>Journal of physical chemistry. C, 2022-09, Vol.126 (38), p.16164-16171</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6318-7966 ; 0000-0002-8709-2889 ; 0000-0001-7946-7137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.2c04833$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.2c04833$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27055,27903,27904,56716,56766</link.rule.ids></links><search><creatorcontrib>Bosio, Noemi</creatorcontrib><creatorcontrib>Di, Mengqiao</creatorcontrib><creatorcontrib>Skoglundh, Magnus</creatorcontrib><creatorcontrib>Carlsson, Per-Anders</creatorcontrib><creatorcontrib>Grönbeck, Henrik</creatorcontrib><title>Interface Reactions Dominate Low-Temperature CO Oxidation Activity over Pt/CeO2</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>First-principles-based kinetic Monte Carlo simulations and kinetic experiments are used to explore CO oxidation over Pt/CeO2. The simulations compare CO oxidation over a ceria-supported ∼1 nm particle with simulations of a free-standing particle and Pt(111). The onset of the CO oxidation over ceria supported Pt is shifted to lower temperatures compared to the unsupported systems thanks to a Mars–van Krevelen mechanism at the Pt/CeO2 interface perimeter, which is not sensitive to CO poisoning. Both the Mars–van Krevelen mechanism and the conventional Langmuir–Hinshelwood mechanism over the Pt nanoparticle are contributing to the conversion after the reaction onset. The reaction orders in CO and O2 are compared experimentally for Pt/CeO2  and Pt/Al2O3. The reaction orders over Pt/CeO2  are close to zero for both CO and O2, whereas the corresponding reaction orders are −0.75 and 0.68 over Pt/Al2O3. The measured zero orders for Pt/CeO2  show the absence of CO/O2 site competition and underline the relevance of interface reactions. The measurements for Pt/Al2O3 indicate that the main reaction path for CO oxidation over Pt is a conventional Langmuir–Hinshelwood reaction. The results elucidate the interplay between condition-dependent reaction mechanisms for CO oxidation over Pt supported on reducible oxides.</description><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kFFLwzAUhYMoOKfvPuYH2O4mN1nax1F1DgoVmc8lTW6hxbWjzab-ezsdPp3D4XAu92PsXkAsQIqFdWPc7p2LpQOVIF6wmUhRRkZpffnvlblmN-PYAmgEgTNWbLpAQ20d8TeyLjR9N_LHftd0NhDP-89oS7s9DTYcBuJZwYuvxttTja-m9rEJ37w_0sBfwyKjQt6yq9p-jHR31jl7f37aZi9RXqw32SqPrFiqEHmNklxiKylTIWpIDCijjQSr0qX3HhKHzglta6wJZErKU-UlkjeQVgQ4Zw9_u9PfZdsfhm66VgooTzDK33CCUZ5h4A88t1Rj</recordid><startdate>20220929</startdate><enddate>20220929</enddate><creator>Bosio, Noemi</creator><creator>Di, Mengqiao</creator><creator>Skoglundh, Magnus</creator><creator>Carlsson, Per-Anders</creator><creator>Grönbeck, Henrik</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0001-6318-7966</orcidid><orcidid>https://orcid.org/0000-0002-8709-2889</orcidid><orcidid>https://orcid.org/0000-0001-7946-7137</orcidid></search><sort><creationdate>20220929</creationdate><title>Interface Reactions Dominate Low-Temperature CO Oxidation Activity over Pt/CeO2</title><author>Bosio, Noemi ; Di, Mengqiao ; Skoglundh, Magnus ; Carlsson, Per-Anders ; Grönbeck, Henrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a164t-d532ec8ab22911f0870475720a496ddd08c3cc15af3fe029e4debd23ed709be03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>C: Chemical and Catalytic Reactivity at Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bosio, Noemi</creatorcontrib><creatorcontrib>Di, Mengqiao</creatorcontrib><creatorcontrib>Skoglundh, Magnus</creatorcontrib><creatorcontrib>Carlsson, Per-Anders</creatorcontrib><creatorcontrib>Grönbeck, Henrik</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bosio, Noemi</au><au>Di, Mengqiao</au><au>Skoglundh, Magnus</au><au>Carlsson, Per-Anders</au><au>Grönbeck, Henrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface Reactions Dominate Low-Temperature CO Oxidation Activity over Pt/CeO2</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2022-09-29</date><risdate>2022</risdate><volume>126</volume><issue>38</issue><spage>16164</spage><epage>16171</epage><pages>16164-16171</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>First-principles-based kinetic Monte Carlo simulations and kinetic experiments are used to explore CO oxidation over Pt/CeO2. The simulations compare CO oxidation over a ceria-supported ∼1 nm particle with simulations of a free-standing particle and Pt(111). The onset of the CO oxidation over ceria supported Pt is shifted to lower temperatures compared to the unsupported systems thanks to a Mars–van Krevelen mechanism at the Pt/CeO2 interface perimeter, which is not sensitive to CO poisoning. Both the Mars–van Krevelen mechanism and the conventional Langmuir–Hinshelwood mechanism over the Pt nanoparticle are contributing to the conversion after the reaction onset. The reaction orders in CO and O2 are compared experimentally for Pt/CeO2  and Pt/Al2O3. The reaction orders over Pt/CeO2  are close to zero for both CO and O2, whereas the corresponding reaction orders are −0.75 and 0.68 over Pt/Al2O3. The measured zero orders for Pt/CeO2  show the absence of CO/O2 site competition and underline the relevance of interface reactions. The measurements for Pt/Al2O3 indicate that the main reaction path for CO oxidation over Pt is a conventional Langmuir–Hinshelwood reaction. The results elucidate the interplay between condition-dependent reaction mechanisms for CO oxidation over Pt supported on reducible oxides.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.2c04833</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6318-7966</orcidid><orcidid>https://orcid.org/0000-0002-8709-2889</orcidid><orcidid>https://orcid.org/0000-0001-7946-7137</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2022-09, Vol.126 (38), p.16164-16171
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_2c04833
source ACS Publications
subjects C: Chemical and Catalytic Reactivity at Interfaces
title Interface Reactions Dominate Low-Temperature CO Oxidation Activity over Pt/CeO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20Reactions%20Dominate%20Low-Temperature%20CO%20Oxidation%20Activity%20over%20Pt/CeO2&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Bosio,%20Noemi&rft.date=2022-09-29&rft.volume=126&rft.issue=38&rft.spage=16164&rft.epage=16171&rft.pages=16164-16171&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.2c04833&rft_dat=%3Cacs%3Ef60434914%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true