van der Waals g‑C3N4/BiLuWO6 Heterojunctions from Theoretical Predictions to Photocatalytic Applications
Heterojunction plays an important role in enhancing the photocatalysis performance of materials. In this paper, van der Waals g-C3N4/BiLuWO6 heterojunction forms a Z-scheme energy band configuration through interlayer binding energy, energy band, work function, and charge density difference calculat...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2021-09, Vol.125 (36), p.19763-19772 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19772 |
---|---|
container_issue | 36 |
container_start_page | 19763 |
container_title | Journal of physical chemistry. C |
container_volume | 125 |
creator | Jia, Weiwei Ding, Bangfu Qian, Xin Yang, Yanmin Mao, Liang Cai, Xiaoyan Guo, Shaoqiang Zhang, Junying |
description | Heterojunction plays an important role in enhancing the photocatalysis performance of materials. In this paper, van der Waals g-C3N4/BiLuWO6 heterojunction forms a Z-scheme energy band configuration through interlayer binding energy, energy band, work function, and charge density difference calculations. Photogenerated electrons transfer from the conduction band (CB) of g-C3N4 to the valence band (VB) of BiLuWO6. Based on theoretical predictions, 13 heterojunctions were synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Photocurrent response, impedance, Mott–Schottky curve, and free radical tests further confirm the rapid separation of the photogenerated carriers in the n-type g-C3N4/BiLuWO6 heterojunction. Degradation efficiencies of rhodamine B (RhB) and methylene blue (MB) are 93 and 85% under mercury lamp irradiation, respectively. The values are higher than 50 and 64% for g-C3N4 as well as 14 and 8% for BiLuWO6. Except for pollutant degradation, the H2 evolution rate of the heterojunction is 289.08 μmol/g/h using xenon lamp irradiation, which is higher than 161.08 μmol/g/h of g-C3N4 and 13.13 μmol/g/h of BiLuWO6. The decomposition path of RhB and the improved mechanism of H2 production activity are revealed by high-performance liquid chromatography–mass spectrometry (HPLC–MS) and Gibbs free energy analysis. |
doi_str_mv | 10.1021/acs.jpcc.1c05368 |
format | Article |
fullrecord | <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_1c05368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d9872190</sourcerecordid><originalsourceid>FETCH-LOGICAL-a192t-755f7df7a2968a46935133a9374434be2a61c162cac466d9faecd319f7621f9b3</originalsourceid><addsrcrecordid>eNo9kEFOwzAQRS0EEqWwZ-kDkDRjJ069LBG0SBXtoqjLaOrYNFGIo8RBYscVuCInwZSI1Yzmf83_eoTcQhRCxGCGqg-rVqkQVJRwMT8jE5CcBWmcJOf_e5xekqu-ryLviYBPSPWODS10R_eIdU9fvz-_Mv4cz-7L9bDfCLrSTne2GhrlStv01HT2je6O2nbalQpruu10UY6is3R7tM4qdFh_eJ0u2rb2tpN8TS6Mz9A345ySl8eHXbYK1pvlU7ZYBwiSuSBNEpMWJkUmxRxjIXkCnKPkvj2PD5qhAAWCKVSxEIU0qFXBQZpUMDDywKfk7u-vR5JXdugan5ZDlP9yyk9HzykfOfEf1etfLQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>van der Waals g‑C3N4/BiLuWO6 Heterojunctions from Theoretical Predictions to Photocatalytic Applications</title><source>American Chemical Society Journals</source><creator>Jia, Weiwei ; Ding, Bangfu ; Qian, Xin ; Yang, Yanmin ; Mao, Liang ; Cai, Xiaoyan ; Guo, Shaoqiang ; Zhang, Junying</creator><creatorcontrib>Jia, Weiwei ; Ding, Bangfu ; Qian, Xin ; Yang, Yanmin ; Mao, Liang ; Cai, Xiaoyan ; Guo, Shaoqiang ; Zhang, Junying</creatorcontrib><description>Heterojunction plays an important role in enhancing the photocatalysis performance of materials. In this paper, van der Waals g-C3N4/BiLuWO6 heterojunction forms a Z-scheme energy band configuration through interlayer binding energy, energy band, work function, and charge density difference calculations. Photogenerated electrons transfer from the conduction band (CB) of g-C3N4 to the valence band (VB) of BiLuWO6. Based on theoretical predictions, 13 heterojunctions were synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Photocurrent response, impedance, Mott–Schottky curve, and free radical tests further confirm the rapid separation of the photogenerated carriers in the n-type g-C3N4/BiLuWO6 heterojunction. Degradation efficiencies of rhodamine B (RhB) and methylene blue (MB) are 93 and 85% under mercury lamp irradiation, respectively. The values are higher than 50 and 64% for g-C3N4 as well as 14 and 8% for BiLuWO6. Except for pollutant degradation, the H2 evolution rate of the heterojunction is 289.08 μmol/g/h using xenon lamp irradiation, which is higher than 161.08 μmol/g/h of g-C3N4 and 13.13 μmol/g/h of BiLuWO6. The decomposition path of RhB and the improved mechanism of H2 production activity are revealed by high-performance liquid chromatography–mass spectrometry (HPLC–MS) and Gibbs free energy analysis.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.1c05368</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><ispartof>Journal of physical chemistry. C, 2021-09, Vol.125 (36), p.19763-19772</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8507-9971 ; 0000-0002-0589-3544 ; 0000-0002-4860-8774 ; 0000-0002-0247-7609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.1c05368$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.1c05368$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Jia, Weiwei</creatorcontrib><creatorcontrib>Ding, Bangfu</creatorcontrib><creatorcontrib>Qian, Xin</creatorcontrib><creatorcontrib>Yang, Yanmin</creatorcontrib><creatorcontrib>Mao, Liang</creatorcontrib><creatorcontrib>Cai, Xiaoyan</creatorcontrib><creatorcontrib>Guo, Shaoqiang</creatorcontrib><creatorcontrib>Zhang, Junying</creatorcontrib><title>van der Waals g‑C3N4/BiLuWO6 Heterojunctions from Theoretical Predictions to Photocatalytic Applications</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Heterojunction plays an important role in enhancing the photocatalysis performance of materials. In this paper, van der Waals g-C3N4/BiLuWO6 heterojunction forms a Z-scheme energy band configuration through interlayer binding energy, energy band, work function, and charge density difference calculations. Photogenerated electrons transfer from the conduction band (CB) of g-C3N4 to the valence band (VB) of BiLuWO6. Based on theoretical predictions, 13 heterojunctions were synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Photocurrent response, impedance, Mott–Schottky curve, and free radical tests further confirm the rapid separation of the photogenerated carriers in the n-type g-C3N4/BiLuWO6 heterojunction. Degradation efficiencies of rhodamine B (RhB) and methylene blue (MB) are 93 and 85% under mercury lamp irradiation, respectively. The values are higher than 50 and 64% for g-C3N4 as well as 14 and 8% for BiLuWO6. Except for pollutant degradation, the H2 evolution rate of the heterojunction is 289.08 μmol/g/h using xenon lamp irradiation, which is higher than 161.08 μmol/g/h of g-C3N4 and 13.13 μmol/g/h of BiLuWO6. The decomposition path of RhB and the improved mechanism of H2 production activity are revealed by high-performance liquid chromatography–mass spectrometry (HPLC–MS) and Gibbs free energy analysis.</description><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kEFOwzAQRS0EEqWwZ-kDkDRjJ069LBG0SBXtoqjLaOrYNFGIo8RBYscVuCInwZSI1Yzmf83_eoTcQhRCxGCGqg-rVqkQVJRwMT8jE5CcBWmcJOf_e5xekqu-ryLviYBPSPWODS10R_eIdU9fvz-_Mv4cz-7L9bDfCLrSTne2GhrlStv01HT2je6O2nbalQpruu10UY6is3R7tM4qdFh_eJ0u2rb2tpN8TS6Mz9A345ySl8eHXbYK1pvlU7ZYBwiSuSBNEpMWJkUmxRxjIXkCnKPkvj2PD5qhAAWCKVSxEIU0qFXBQZpUMDDywKfk7u-vR5JXdugan5ZDlP9yyk9HzykfOfEf1etfLQ</recordid><startdate>20210916</startdate><enddate>20210916</enddate><creator>Jia, Weiwei</creator><creator>Ding, Bangfu</creator><creator>Qian, Xin</creator><creator>Yang, Yanmin</creator><creator>Mao, Liang</creator><creator>Cai, Xiaoyan</creator><creator>Guo, Shaoqiang</creator><creator>Zhang, Junying</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-8507-9971</orcidid><orcidid>https://orcid.org/0000-0002-0589-3544</orcidid><orcidid>https://orcid.org/0000-0002-4860-8774</orcidid><orcidid>https://orcid.org/0000-0002-0247-7609</orcidid></search><sort><creationdate>20210916</creationdate><title>van der Waals g‑C3N4/BiLuWO6 Heterojunctions from Theoretical Predictions to Photocatalytic Applications</title><author>Jia, Weiwei ; Ding, Bangfu ; Qian, Xin ; Yang, Yanmin ; Mao, Liang ; Cai, Xiaoyan ; Guo, Shaoqiang ; Zhang, Junying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a192t-755f7df7a2968a46935133a9374434be2a61c162cac466d9faecd319f7621f9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C: Chemical and Catalytic Reactivity at Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Weiwei</creatorcontrib><creatorcontrib>Ding, Bangfu</creatorcontrib><creatorcontrib>Qian, Xin</creatorcontrib><creatorcontrib>Yang, Yanmin</creatorcontrib><creatorcontrib>Mao, Liang</creatorcontrib><creatorcontrib>Cai, Xiaoyan</creatorcontrib><creatorcontrib>Guo, Shaoqiang</creatorcontrib><creatorcontrib>Zhang, Junying</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Weiwei</au><au>Ding, Bangfu</au><au>Qian, Xin</au><au>Yang, Yanmin</au><au>Mao, Liang</au><au>Cai, Xiaoyan</au><au>Guo, Shaoqiang</au><au>Zhang, Junying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>van der Waals g‑C3N4/BiLuWO6 Heterojunctions from Theoretical Predictions to Photocatalytic Applications</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-09-16</date><risdate>2021</risdate><volume>125</volume><issue>36</issue><spage>19763</spage><epage>19772</epage><pages>19763-19772</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Heterojunction plays an important role in enhancing the photocatalysis performance of materials. In this paper, van der Waals g-C3N4/BiLuWO6 heterojunction forms a Z-scheme energy band configuration through interlayer binding energy, energy band, work function, and charge density difference calculations. Photogenerated electrons transfer from the conduction band (CB) of g-C3N4 to the valence band (VB) of BiLuWO6. Based on theoretical predictions, 13 heterojunctions were synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Photocurrent response, impedance, Mott–Schottky curve, and free radical tests further confirm the rapid separation of the photogenerated carriers in the n-type g-C3N4/BiLuWO6 heterojunction. Degradation efficiencies of rhodamine B (RhB) and methylene blue (MB) are 93 and 85% under mercury lamp irradiation, respectively. The values are higher than 50 and 64% for g-C3N4 as well as 14 and 8% for BiLuWO6. Except for pollutant degradation, the H2 evolution rate of the heterojunction is 289.08 μmol/g/h using xenon lamp irradiation, which is higher than 161.08 μmol/g/h of g-C3N4 and 13.13 μmol/g/h of BiLuWO6. The decomposition path of RhB and the improved mechanism of H2 production activity are revealed by high-performance liquid chromatography–mass spectrometry (HPLC–MS) and Gibbs free energy analysis.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.1c05368</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8507-9971</orcidid><orcidid>https://orcid.org/0000-0002-0589-3544</orcidid><orcidid>https://orcid.org/0000-0002-4860-8774</orcidid><orcidid>https://orcid.org/0000-0002-0247-7609</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2021-09, Vol.125 (36), p.19763-19772 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_acs_journals_10_1021_acs_jpcc_1c05368 |
source | American Chemical Society Journals |
subjects | C: Chemical and Catalytic Reactivity at Interfaces |
title | van der Waals g‑C3N4/BiLuWO6 Heterojunctions from Theoretical Predictions to Photocatalytic Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=van%20der%20Waals%20g%E2%80%91C3N4/BiLuWO6%20Heterojunctions%20from%20Theoretical%20Predictions%20to%20Photocatalytic%20Applications&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Jia,%20Weiwei&rft.date=2021-09-16&rft.volume=125&rft.issue=36&rft.spage=19763&rft.epage=19772&rft.pages=19763-19772&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.1c05368&rft_dat=%3Cacs%3Ed9872190%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |