van der Waals g‑C3N4/BiLuWO6 Heterojunctions from Theoretical Predictions to Photocatalytic Applications

Heterojunction plays an important role in enhancing the photocatalysis performance of materials. In this paper, van der Waals g-C3N4/BiLuWO6 heterojunction forms a Z-scheme energy band configuration through interlayer binding energy, energy band, work function, and charge density difference calculat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2021-09, Vol.125 (36), p.19763-19772
Hauptverfasser: Jia, Weiwei, Ding, Bangfu, Qian, Xin, Yang, Yanmin, Mao, Liang, Cai, Xiaoyan, Guo, Shaoqiang, Zhang, Junying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19772
container_issue 36
container_start_page 19763
container_title Journal of physical chemistry. C
container_volume 125
creator Jia, Weiwei
Ding, Bangfu
Qian, Xin
Yang, Yanmin
Mao, Liang
Cai, Xiaoyan
Guo, Shaoqiang
Zhang, Junying
description Heterojunction plays an important role in enhancing the photocatalysis performance of materials. In this paper, van der Waals g-C3N4/BiLuWO6 heterojunction forms a Z-scheme energy band configuration through interlayer binding energy, energy band, work function, and charge density difference calculations. Photogenerated electrons transfer from the conduction band (CB) of g-C3N4 to the valence band (VB) of BiLuWO6. Based on theoretical predictions, 13 heterojunctions were synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Photocurrent response, impedance, Mott–Schottky curve, and free radical tests further confirm the rapid separation of the photogenerated carriers in the n-type g-C3N4/BiLuWO6 heterojunction. Degradation efficiencies of rhodamine B (RhB) and methylene blue (MB) are 93 and 85% under mercury lamp irradiation, respectively. The values are higher than 50 and 64% for g-C3N4 as well as 14 and 8% for BiLuWO6. Except for pollutant degradation, the H2 evolution rate of the heterojunction is 289.08 μmol/g/h using xenon lamp irradiation, which is higher than 161.08 μmol/g/h of g-C3N4 and 13.13 μmol/g/h of BiLuWO6. The decomposition path of RhB and the improved mechanism of H2 production activity are revealed by high-performance liquid chromatography–mass spectrometry (HPLC–MS) and Gibbs free energy analysis.
doi_str_mv 10.1021/acs.jpcc.1c05368
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_1c05368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d9872190</sourcerecordid><originalsourceid>FETCH-LOGICAL-a192t-755f7df7a2968a46935133a9374434be2a61c162cac466d9faecd319f7621f9b3</originalsourceid><addsrcrecordid>eNo9kEFOwzAQRS0EEqWwZ-kDkDRjJ069LBG0SBXtoqjLaOrYNFGIo8RBYscVuCInwZSI1Yzmf83_eoTcQhRCxGCGqg-rVqkQVJRwMT8jE5CcBWmcJOf_e5xekqu-ryLviYBPSPWODS10R_eIdU9fvz-_Mv4cz-7L9bDfCLrSTne2GhrlStv01HT2je6O2nbalQpruu10UY6is3R7tM4qdFh_eJ0u2rb2tpN8TS6Mz9A345ySl8eHXbYK1pvlU7ZYBwiSuSBNEpMWJkUmxRxjIXkCnKPkvj2PD5qhAAWCKVSxEIU0qFXBQZpUMDDywKfk7u-vR5JXdugan5ZDlP9yyk9HzykfOfEf1etfLQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>van der Waals g‑C3N4/BiLuWO6 Heterojunctions from Theoretical Predictions to Photocatalytic Applications</title><source>American Chemical Society Journals</source><creator>Jia, Weiwei ; Ding, Bangfu ; Qian, Xin ; Yang, Yanmin ; Mao, Liang ; Cai, Xiaoyan ; Guo, Shaoqiang ; Zhang, Junying</creator><creatorcontrib>Jia, Weiwei ; Ding, Bangfu ; Qian, Xin ; Yang, Yanmin ; Mao, Liang ; Cai, Xiaoyan ; Guo, Shaoqiang ; Zhang, Junying</creatorcontrib><description>Heterojunction plays an important role in enhancing the photocatalysis performance of materials. In this paper, van der Waals g-C3N4/BiLuWO6 heterojunction forms a Z-scheme energy band configuration through interlayer binding energy, energy band, work function, and charge density difference calculations. Photogenerated electrons transfer from the conduction band (CB) of g-C3N4 to the valence band (VB) of BiLuWO6. Based on theoretical predictions, 13 heterojunctions were synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Photocurrent response, impedance, Mott–Schottky curve, and free radical tests further confirm the rapid separation of the photogenerated carriers in the n-type g-C3N4/BiLuWO6 heterojunction. Degradation efficiencies of rhodamine B (RhB) and methylene blue (MB) are 93 and 85% under mercury lamp irradiation, respectively. The values are higher than 50 and 64% for g-C3N4 as well as 14 and 8% for BiLuWO6. Except for pollutant degradation, the H2 evolution rate of the heterojunction is 289.08 μmol/g/h using xenon lamp irradiation, which is higher than 161.08 μmol/g/h of g-C3N4 and 13.13 μmol/g/h of BiLuWO6. The decomposition path of RhB and the improved mechanism of H2 production activity are revealed by high-performance liquid chromatography–mass spectrometry (HPLC–MS) and Gibbs free energy analysis.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.1c05368</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><ispartof>Journal of physical chemistry. C, 2021-09, Vol.125 (36), p.19763-19772</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8507-9971 ; 0000-0002-0589-3544 ; 0000-0002-4860-8774 ; 0000-0002-0247-7609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.1c05368$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.1c05368$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Jia, Weiwei</creatorcontrib><creatorcontrib>Ding, Bangfu</creatorcontrib><creatorcontrib>Qian, Xin</creatorcontrib><creatorcontrib>Yang, Yanmin</creatorcontrib><creatorcontrib>Mao, Liang</creatorcontrib><creatorcontrib>Cai, Xiaoyan</creatorcontrib><creatorcontrib>Guo, Shaoqiang</creatorcontrib><creatorcontrib>Zhang, Junying</creatorcontrib><title>van der Waals g‑C3N4/BiLuWO6 Heterojunctions from Theoretical Predictions to Photocatalytic Applications</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Heterojunction plays an important role in enhancing the photocatalysis performance of materials. In this paper, van der Waals g-C3N4/BiLuWO6 heterojunction forms a Z-scheme energy band configuration through interlayer binding energy, energy band, work function, and charge density difference calculations. Photogenerated electrons transfer from the conduction band (CB) of g-C3N4 to the valence band (VB) of BiLuWO6. Based on theoretical predictions, 13 heterojunctions were synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Photocurrent response, impedance, Mott–Schottky curve, and free radical tests further confirm the rapid separation of the photogenerated carriers in the n-type g-C3N4/BiLuWO6 heterojunction. Degradation efficiencies of rhodamine B (RhB) and methylene blue (MB) are 93 and 85% under mercury lamp irradiation, respectively. The values are higher than 50 and 64% for g-C3N4 as well as 14 and 8% for BiLuWO6. Except for pollutant degradation, the H2 evolution rate of the heterojunction is 289.08 μmol/g/h using xenon lamp irradiation, which is higher than 161.08 μmol/g/h of g-C3N4 and 13.13 μmol/g/h of BiLuWO6. The decomposition path of RhB and the improved mechanism of H2 production activity are revealed by high-performance liquid chromatography–mass spectrometry (HPLC–MS) and Gibbs free energy analysis.</description><subject>C: Chemical and Catalytic Reactivity at Interfaces</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9kEFOwzAQRS0EEqWwZ-kDkDRjJ069LBG0SBXtoqjLaOrYNFGIo8RBYscVuCInwZSI1Yzmf83_eoTcQhRCxGCGqg-rVqkQVJRwMT8jE5CcBWmcJOf_e5xekqu-ryLviYBPSPWODS10R_eIdU9fvz-_Mv4cz-7L9bDfCLrSTne2GhrlStv01HT2je6O2nbalQpruu10UY6is3R7tM4qdFh_eJ0u2rb2tpN8TS6Mz9A345ySl8eHXbYK1pvlU7ZYBwiSuSBNEpMWJkUmxRxjIXkCnKPkvj2PD5qhAAWCKVSxEIU0qFXBQZpUMDDywKfk7u-vR5JXdugan5ZDlP9yyk9HzykfOfEf1etfLQ</recordid><startdate>20210916</startdate><enddate>20210916</enddate><creator>Jia, Weiwei</creator><creator>Ding, Bangfu</creator><creator>Qian, Xin</creator><creator>Yang, Yanmin</creator><creator>Mao, Liang</creator><creator>Cai, Xiaoyan</creator><creator>Guo, Shaoqiang</creator><creator>Zhang, Junying</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0002-8507-9971</orcidid><orcidid>https://orcid.org/0000-0002-0589-3544</orcidid><orcidid>https://orcid.org/0000-0002-4860-8774</orcidid><orcidid>https://orcid.org/0000-0002-0247-7609</orcidid></search><sort><creationdate>20210916</creationdate><title>van der Waals g‑C3N4/BiLuWO6 Heterojunctions from Theoretical Predictions to Photocatalytic Applications</title><author>Jia, Weiwei ; Ding, Bangfu ; Qian, Xin ; Yang, Yanmin ; Mao, Liang ; Cai, Xiaoyan ; Guo, Shaoqiang ; Zhang, Junying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a192t-755f7df7a2968a46935133a9374434be2a61c162cac466d9faecd319f7621f9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>C: Chemical and Catalytic Reactivity at Interfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Weiwei</creatorcontrib><creatorcontrib>Ding, Bangfu</creatorcontrib><creatorcontrib>Qian, Xin</creatorcontrib><creatorcontrib>Yang, Yanmin</creatorcontrib><creatorcontrib>Mao, Liang</creatorcontrib><creatorcontrib>Cai, Xiaoyan</creatorcontrib><creatorcontrib>Guo, Shaoqiang</creatorcontrib><creatorcontrib>Zhang, Junying</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Weiwei</au><au>Ding, Bangfu</au><au>Qian, Xin</au><au>Yang, Yanmin</au><au>Mao, Liang</au><au>Cai, Xiaoyan</au><au>Guo, Shaoqiang</au><au>Zhang, Junying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>van der Waals g‑C3N4/BiLuWO6 Heterojunctions from Theoretical Predictions to Photocatalytic Applications</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2021-09-16</date><risdate>2021</risdate><volume>125</volume><issue>36</issue><spage>19763</spage><epage>19772</epage><pages>19763-19772</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Heterojunction plays an important role in enhancing the photocatalysis performance of materials. In this paper, van der Waals g-C3N4/BiLuWO6 heterojunction forms a Z-scheme energy band configuration through interlayer binding energy, energy band, work function, and charge density difference calculations. Photogenerated electrons transfer from the conduction band (CB) of g-C3N4 to the valence band (VB) of BiLuWO6. Based on theoretical predictions, 13 heterojunctions were synthesized and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Photocurrent response, impedance, Mott–Schottky curve, and free radical tests further confirm the rapid separation of the photogenerated carriers in the n-type g-C3N4/BiLuWO6 heterojunction. Degradation efficiencies of rhodamine B (RhB) and methylene blue (MB) are 93 and 85% under mercury lamp irradiation, respectively. The values are higher than 50 and 64% for g-C3N4 as well as 14 and 8% for BiLuWO6. Except for pollutant degradation, the H2 evolution rate of the heterojunction is 289.08 μmol/g/h using xenon lamp irradiation, which is higher than 161.08 μmol/g/h of g-C3N4 and 13.13 μmol/g/h of BiLuWO6. The decomposition path of RhB and the improved mechanism of H2 production activity are revealed by high-performance liquid chromatography–mass spectrometry (HPLC–MS) and Gibbs free energy analysis.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.1c05368</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8507-9971</orcidid><orcidid>https://orcid.org/0000-0002-0589-3544</orcidid><orcidid>https://orcid.org/0000-0002-4860-8774</orcidid><orcidid>https://orcid.org/0000-0002-0247-7609</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2021-09, Vol.125 (36), p.19763-19772
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_1c05368
source American Chemical Society Journals
subjects C: Chemical and Catalytic Reactivity at Interfaces
title van der Waals g‑C3N4/BiLuWO6 Heterojunctions from Theoretical Predictions to Photocatalytic Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=van%20der%20Waals%20g%E2%80%91C3N4/BiLuWO6%20Heterojunctions%20from%20Theoretical%20Predictions%20to%20Photocatalytic%20Applications&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Jia,%20Weiwei&rft.date=2021-09-16&rft.volume=125&rft.issue=36&rft.spage=19763&rft.epage=19772&rft.pages=19763-19772&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.1c05368&rft_dat=%3Cacs%3Ed9872190%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true