Limiting Domain Size of MoS2: Effects of Stoichiometry and Oxygen

Reactive molecular dynamics simulations of MoS2 crystallization from amorphous precursor materials showed that crystal domain size decreased because of excess S or O, relative to the stoichiometric case. Simulation results were corroborated by comparison of calculated limiting domain sizes to experi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2020-12, Vol.124 (50), p.27571-27579
Hauptverfasser: Chen, Rimei, Konicek, Andrew R, Jusufi, Arben, Kliewer, Chris E, Jaishankar, Aditya, Schilowitz, Alan, Martini, Ashlie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27579
container_issue 50
container_start_page 27571
container_title Journal of physical chemistry. C
container_volume 124
creator Chen, Rimei
Konicek, Andrew R
Jusufi, Arben
Kliewer, Chris E
Jaishankar, Aditya
Schilowitz, Alan
Martini, Ashlie
description Reactive molecular dynamics simulations of MoS2 crystallization from amorphous precursor materials showed that crystal domain size decreased because of excess S or O, relative to the stoichiometric case. Simulation results were corroborated by comparison of calculated limiting domain sizes to experimental measurements of MoS2 crystals grown from thermal decomposition of molybdenum dithiocarbamate. Then, the simulations were used to evaluate two previously proposed domain growth mechanismsthermodynamic and kinetic; both were shown to contribute to MoS2 domain growth and, importantly, to stopping growth at a limiting size. It was shown that S-rich or O-containing precursor materials can inhibit grain growth (i) thermodynamically, by increasing the amount of S at domain edges which decreases boundary energy, making them more stable and lowering the driving force for growth, and (ii) kinetically, by decreasing the probability of Mo–S interactions at domain edges that would otherwise contribute to domain growth. The simulations explain how each of these mechanisms determines the effect of precursor composition on MoS2 domain size and, further, suggest avenues for tunable MoS2 synthesis to achieve application-specific domain size.
doi_str_mv 10.1021/acs.jpcc.0c08981
format Article
fullrecord <record><control><sourceid>acs</sourceid><recordid>TN_cdi_acs_journals_10_1021_acs_jpcc_0c08981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b45731928</sourcerecordid><originalsourceid>FETCH-LOGICAL-a234t-7169f27bf94831d4232dbcef9e806f39e1fdbee0a083ca29299e3836f178352e3</originalsourceid><addsrcrecordid>eNo9j8tOwzAURC0EEqWwZ-kPIMHXNw-bXVVaQArqIrCOHOe6OCIxaoJE-XpSqFjN6CxmdBi7BhGDkHBr7BC3H9bGwgqlFZywGWiUUZ6k6el_T_JzdjEMrRApCsAZWxS-86Pvt_w-dMb3vPTfxIPjz6GUd3zlHNlxOIByDN6--dDRuNtz0zd887XfUn_Jzpx5H-jqmHP2ul69LB-jYvPwtFwUkZGYjFEOmXYyr51OFEKTSJRNbclpUiJzqAlcUxMJIxRaI7XUmlBh5iBXmErCObv5251MqzZ87vrprQJRHfSrXzjpV0d9_AGla06T</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Limiting Domain Size of MoS2: Effects of Stoichiometry and Oxygen</title><source>ACS Publications</source><creator>Chen, Rimei ; Konicek, Andrew R ; Jusufi, Arben ; Kliewer, Chris E ; Jaishankar, Aditya ; Schilowitz, Alan ; Martini, Ashlie</creator><creatorcontrib>Chen, Rimei ; Konicek, Andrew R ; Jusufi, Arben ; Kliewer, Chris E ; Jaishankar, Aditya ; Schilowitz, Alan ; Martini, Ashlie</creatorcontrib><description>Reactive molecular dynamics simulations of MoS2 crystallization from amorphous precursor materials showed that crystal domain size decreased because of excess S or O, relative to the stoichiometric case. Simulation results were corroborated by comparison of calculated limiting domain sizes to experimental measurements of MoS2 crystals grown from thermal decomposition of molybdenum dithiocarbamate. Then, the simulations were used to evaluate two previously proposed domain growth mechanismsthermodynamic and kinetic; both were shown to contribute to MoS2 domain growth and, importantly, to stopping growth at a limiting size. It was shown that S-rich or O-containing precursor materials can inhibit grain growth (i) thermodynamically, by increasing the amount of S at domain edges which decreases boundary energy, making them more stable and lowering the driving force for growth, and (ii) kinetically, by decreasing the probability of Mo–S interactions at domain edges that would otherwise contribute to domain growth. The simulations explain how each of these mechanisms determines the effect of precursor composition on MoS2 domain size and, further, suggest avenues for tunable MoS2 synthesis to achieve application-specific domain size.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.0c08981</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>C: Surfaces, Interfaces, Porous Materials, and Catalysis</subject><ispartof>Journal of physical chemistry. C, 2020-12, Vol.124 (50), p.27571-27579</ispartof><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2017-6081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.0c08981$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.0c08981$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Chen, Rimei</creatorcontrib><creatorcontrib>Konicek, Andrew R</creatorcontrib><creatorcontrib>Jusufi, Arben</creatorcontrib><creatorcontrib>Kliewer, Chris E</creatorcontrib><creatorcontrib>Jaishankar, Aditya</creatorcontrib><creatorcontrib>Schilowitz, Alan</creatorcontrib><creatorcontrib>Martini, Ashlie</creatorcontrib><title>Limiting Domain Size of MoS2: Effects of Stoichiometry and Oxygen</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Reactive molecular dynamics simulations of MoS2 crystallization from amorphous precursor materials showed that crystal domain size decreased because of excess S or O, relative to the stoichiometric case. Simulation results were corroborated by comparison of calculated limiting domain sizes to experimental measurements of MoS2 crystals grown from thermal decomposition of molybdenum dithiocarbamate. Then, the simulations were used to evaluate two previously proposed domain growth mechanismsthermodynamic and kinetic; both were shown to contribute to MoS2 domain growth and, importantly, to stopping growth at a limiting size. It was shown that S-rich or O-containing precursor materials can inhibit grain growth (i) thermodynamically, by increasing the amount of S at domain edges which decreases boundary energy, making them more stable and lowering the driving force for growth, and (ii) kinetically, by decreasing the probability of Mo–S interactions at domain edges that would otherwise contribute to domain growth. The simulations explain how each of these mechanisms determines the effect of precursor composition on MoS2 domain size and, further, suggest avenues for tunable MoS2 synthesis to achieve application-specific domain size.</description><subject>C: Surfaces, Interfaces, Porous Materials, and Catalysis</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNo9j8tOwzAURC0EEqWwZ-kPIMHXNw-bXVVaQArqIrCOHOe6OCIxaoJE-XpSqFjN6CxmdBi7BhGDkHBr7BC3H9bGwgqlFZywGWiUUZ6k6el_T_JzdjEMrRApCsAZWxS-86Pvt_w-dMb3vPTfxIPjz6GUd3zlHNlxOIByDN6--dDRuNtz0zd887XfUn_Jzpx5H-jqmHP2ul69LB-jYvPwtFwUkZGYjFEOmXYyr51OFEKTSJRNbclpUiJzqAlcUxMJIxRaI7XUmlBh5iBXmErCObv5251MqzZ87vrprQJRHfSrXzjpV0d9_AGla06T</recordid><startdate>20201217</startdate><enddate>20201217</enddate><creator>Chen, Rimei</creator><creator>Konicek, Andrew R</creator><creator>Jusufi, Arben</creator><creator>Kliewer, Chris E</creator><creator>Jaishankar, Aditya</creator><creator>Schilowitz, Alan</creator><creator>Martini, Ashlie</creator><general>American Chemical Society</general><scope/><orcidid>https://orcid.org/0000-0003-2017-6081</orcidid></search><sort><creationdate>20201217</creationdate><title>Limiting Domain Size of MoS2: Effects of Stoichiometry and Oxygen</title><author>Chen, Rimei ; Konicek, Andrew R ; Jusufi, Arben ; Kliewer, Chris E ; Jaishankar, Aditya ; Schilowitz, Alan ; Martini, Ashlie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a234t-7169f27bf94831d4232dbcef9e806f39e1fdbee0a083ca29299e3836f178352e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>C: Surfaces, Interfaces, Porous Materials, and Catalysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Rimei</creatorcontrib><creatorcontrib>Konicek, Andrew R</creatorcontrib><creatorcontrib>Jusufi, Arben</creatorcontrib><creatorcontrib>Kliewer, Chris E</creatorcontrib><creatorcontrib>Jaishankar, Aditya</creatorcontrib><creatorcontrib>Schilowitz, Alan</creatorcontrib><creatorcontrib>Martini, Ashlie</creatorcontrib><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Rimei</au><au>Konicek, Andrew R</au><au>Jusufi, Arben</au><au>Kliewer, Chris E</au><au>Jaishankar, Aditya</au><au>Schilowitz, Alan</au><au>Martini, Ashlie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Limiting Domain Size of MoS2: Effects of Stoichiometry and Oxygen</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2020-12-17</date><risdate>2020</risdate><volume>124</volume><issue>50</issue><spage>27571</spage><epage>27579</epage><pages>27571-27579</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Reactive molecular dynamics simulations of MoS2 crystallization from amorphous precursor materials showed that crystal domain size decreased because of excess S or O, relative to the stoichiometric case. Simulation results were corroborated by comparison of calculated limiting domain sizes to experimental measurements of MoS2 crystals grown from thermal decomposition of molybdenum dithiocarbamate. Then, the simulations were used to evaluate two previously proposed domain growth mechanismsthermodynamic and kinetic; both were shown to contribute to MoS2 domain growth and, importantly, to stopping growth at a limiting size. It was shown that S-rich or O-containing precursor materials can inhibit grain growth (i) thermodynamically, by increasing the amount of S at domain edges which decreases boundary energy, making them more stable and lowering the driving force for growth, and (ii) kinetically, by decreasing the probability of Mo–S interactions at domain edges that would otherwise contribute to domain growth. The simulations explain how each of these mechanisms determines the effect of precursor composition on MoS2 domain size and, further, suggest avenues for tunable MoS2 synthesis to achieve application-specific domain size.</abstract><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.0c08981</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2017-6081</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2020-12, Vol.124 (50), p.27571-27579
issn 1932-7447
1932-7455
language eng
recordid cdi_acs_journals_10_1021_acs_jpcc_0c08981
source ACS Publications
subjects C: Surfaces, Interfaces, Porous Materials, and Catalysis
title Limiting Domain Size of MoS2: Effects of Stoichiometry and Oxygen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Limiting%20Domain%20Size%20of%20MoS2:%20Effects%20of%20Stoichiometry%20and%20Oxygen&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Chen,%20Rimei&rft.date=2020-12-17&rft.volume=124&rft.issue=50&rft.spage=27571&rft.epage=27579&rft.pages=27571-27579&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.0c08981&rft_dat=%3Cacs%3Eb45731928%3C/acs%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true